Publications

2024
of Consortium AGR. Updates to the Alliance of Genome Resources Central Infrastructure. Genetics. 2024;Mar 29 (:iyae049.) :doi: 10.1093/genetics/iyae049. Online ahead of print. Abstract
The Alliance of Genome Resources (Alliance) is an extensible coalition of knowledgebases focused on the genetics and genomics of intensively-studied model organisms. The Alliance is organized as individual knowledge centers with strong connections to their research communities and a centralized software infrastructure, discussed here. Model organisms currently represented in the Alliance are budding yeast, C. elegans, Drosophila, zebrafish, frog, laboratory mouse, laboratory rat, and the Gene Ontology Consortium. The project is in a rapid development phase to harmonize knowledge, store it, analyze it, and present it to the community through a web portal, direct downloads, and Application Programming Interfaces (APIs). Here we focus on developments over the last two years. Specifically, we added and enhanced tools for browsing the genome (JBrowse), downloading sequences, mining complex data (AllianceMine), visualizing pathways, full-text searching of the literature (Textpresso), and sequence similarity searching (SequenceServer). We enhanced existing interactive data tables and added an interactive table of paralogs to complement our representation of orthology. To support individual model organism communities, we implemented species-specific "landing pages" and will add disease-specific portals soon; in addition, we support a common community forum implemented in Discourse software. We describe our progress towards a central persistent database to support curation, the data modeling that underpins harmonization, and progress towards a state-of-the art literature curation system with integrated Artificial Intelligence and Machine Learning (AI/ML).
iyae049.pdf
Zirin J, Jusiak B, Lopes R, Ewen-Campen B, Bosch J, Risbeck A, et al. Expanding the Drosophila toolkit for dual control of gene expression. Elife. 2024;Apr (3:12:RP94073) :doi: 10.7554/eLife.94073. Abstract
The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.
elife-94073-v1.pdf
Ahmad M, Wu S, Guo X, Perrimon N, Li H. Sensing of dietary amino acids and regulation of calcium dynamics in adipose tissues through Adipokinetic hormone in Drosophila. bioRxiv. 2024;Mar :2024.03.04.583442 :doi: 10.1101/2024.03.04.583442. Abstract

Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related diseases. Drosophila melanogaster has emerged as an excellent model for investigating metabolism and its associated disorders. In this study, we used live-cell imaging to demonstrate that the fly functional homolog of mammalian glucagon, Adipokinetic hormone (AKH), secreted from AKH hormone-producing cells (APCs) in the corpora cardiaca, stimulates intracellular Ca 2+ waves in the larval fat body/adipose tissue to promote lipid metabolism. Further, we show that specific dietary amino acids activate the APCs, leading to increased intracellular Ca 2+ and subsequent AKH secretion. Finally, a comparison of Ca 2+ dynamics in larval and adult fat bodies revealed different mechanisms of regulation, highlighting the interplay of pulses of AKH secretion, extracellular diffusion of the hormone, and intercellular communication through gap junctions. Our study underscores the suitability of Drosophila as a powerful model for exploring real-time nutrient sensing and inter-organ communication dynamics.

 

2024.03.04.583442v1.full_.pdf
Liu G, Jouandin P, Bahng R, Perrimon N, Sabatini D. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. Nature Communications. 2024;March 21 (15(1) :2517. Abstract
Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.
s41467-024-46680-3.pdf
Rolandelli A, Laukaitis-Yousey H, Bogale H, Singh N, Samaddar S, O'Neal A, et al. Tick hemocytes have a pleiotropic role in microbial infection and arthropod fitness. Nature Communications. 2024;Mar 8 (15(1) :2117. Abstract
Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.
s41467-024-46494-3.pdf
Öztürk-Çolak A, Marygold SJ, Antonazzo G, Attrill H, Goutte-Gattat D, Jenkins VK, et al. FlyBase: updates to the Drosophila genes and genomes database. Genetics. 2024;Feb 1 (iyad211). Abstract
FlyBase (flybase.org) is a model organism database and knowledge base about Drosophila melanogaster, commonly known as the fruit fly. Researchers from around the world rely on the genetic, genomic, and functional information available in FlyBase, as well as its tools to view and interrogate these data. In this article, we describe the latest developments and updates to FlyBase. These include the introduction of single-cell RNA sequencing data, improved content and display of functional information, updated orthology pipelines, new chemical reports, and enhancements to our outreach resources.
iyad211.pdf
George N, Fexova S, Fuentes AM, Madrigal P, Bi Y, Iqbal H, et al. Expression Atlas update: Insights from sequencing data at both bulk and single cell level. Nucleic Acids Research. 2024;Jan 5 (52(D1) :D107-D114. Abstract
Expression Atlas (www.ebi.ac.uk/gxa) and its newest counterpart the Single Cell Expression Atlas (www.ebi.ac.uk/gxa/sc) are EMBL-EBI's knowledgebases for gene and protein expression and localisation in bulk and at single cell level. These resources aim to allow users to investigate their expression in normal tissue (baseline) or in response to perturbations such as disease or changes to genotype (differential) across multiple species. Users are invited to search for genes or metadata terms across species or biological conditions in a standardised consistent interface. Alongside these data, new features in Single Cell Expression Atlas allow users to query metadata through our new cell type wheel search. At the experiment level data can be explored through two types of dimensionality reduction plots, t-distributed Stochastic Neighbor Embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP), overlaid with either clustering or metadata information to assist users' understanding. Data are also visualised as marker gene heatmaps identifying genes that help confer cluster identity. For some data, additional visualisations are available as interactive cell level anatomograms and cell type gene expression heatmaps.
expression_atlas_update_insights_from_sequencing_data_at_both_bulk_and_single_cell_level.pdf
Singh N, Rolandelli A, O'Neal AJ, Butler LR, Samaddar S, Loukaitis-Yousey HJ, et al. Genetic manipulation of an Ixodes scapularis cell line. mBio. 2024;Feb (21) :e0247923. Abstract
Although genetic manipulation is one of the hallmarks of model organisms, its applicability to non-model species has remained difficult due to our limited understanding of their fundamental biology. For instance, manipulation of a cell line originated from the black-legged tick Ixodes scapularis, an arthropod that serves as a vector for several human pathogens, has yet to be established. Here, we demonstrate the successful genetic modification of the commonly used tick ISE6 line through ectopic expression and clustered regularly interspaced palindromic repeats [(CRISPR)/CRISPR-associated protein 9 (Cas9)] genome editing. We performed ectopic expression using nucleofection and attained CRISPR-Cas9 editing via homology-dependent recombination. Targeting the E3 ubiquitin ligase x-linked inhibitor of apoptosis (xiap) and its substrate p47 led to an alteration in molecular signaling within the immune deficiency network and increased infection of the rickettsial agent Anaplasma phagocytophilum in I. scapularis ISE6 cells. Collectively, our findings complement techniques for the genetic engineering of I. scapularis ticks, which currently limit efficient and scalable molecular genetic screens in vivo.IMPORTANCEGenetic engineering in arachnids has lagged compared to insects, largely because of substantial differences in their biology. This study unveils the implementation of ectopic expression and CRISPR-Cas9 gene editing in a tick cell line. We introduced fluorescently tagged proteins in ISE6 cells and edited its genome via homology-dependent recombination. We ablated the expression of xiap and p47, two signaling molecules present in the immune deficiency (IMD) pathway of Ixodes scapularis. Impairment of the tick IMD pathway, an analogous network of the tumor necrosis factor receptor in mammals, led to enhanced infection of the rickettsial agent Anaplasma phagocytophilum. Altogether, our findings provide a critical technical resource to the scientific community to enable a deeper understanding of biological circuits in the black-legged tick I. scapularis.
singh-et-al-2024-genetic-manipulation-of-an-ixodes-scapularis-cell-line.pdf
Xu J, Liu Y, Yang F, Cao Y, Chen W, Li JSS, et al. Mechanistic characterization of a Drosophila model of paraneoplastic nephrotic syndrome. Nature Communications. 2024;Feb 9 (15(1) :1241. Abstract
Paraneoplastic syndromes occur in cancer patients and originate from dysfunction of organs at a distance from the tumor or its metastasis. A wide range of organs can be affected in paraneoplastic syndromes; however, the pathological mechanisms by which tumors influence host organs are poorly understood. Recent studies in the fly uncovered that tumor secreted factors target host organs, leading to pathological effects. In this study, using a Drosophila gut tumor model, we characterize a mechanism of tumor-induced kidney dysfunction. Specifically, we find that Pvf1, a PDGF/VEGF signaling ligand, secreted by gut tumors activates the PvR/JNK/Jra signaling pathway in the principal cells of the kidney, leading to mis-expression of renal genes and paraneoplastic renal syndrome-like phenotypes. Our study describes an important mechanism by which gut tumors perturb the function of the kidney, which might be of clinical relevance for the treatment of paraneoplastic syndromes.
41467_2024_article_45493.pdf
Kang J, Zhang C, Wang Y, Peng J, Berger B, Perrimon N, et al. Lipophorin receptors genetically modulate neurodegeneration caused by reduction of Psn expression in the aging Drosophila brain. Genetics. 2024;226 (1) :iyad202. Abstract
Mutations in the Presenilin (PSEN) genes are the most common cause of early-onset familial Alzheimer's disease (FAD). Studies in cell culture, in vitro biochemical systems, and knockin mice showed that PSEN mutations are loss-of-function mutations, impairing γ-secretase activity. Mouse genetic analysis highlighted the importance of Presenilin (PS) in learning and memory, synaptic plasticity and neurotransmitter release, and neuronal survival, and Drosophila studies further demonstrated an evolutionarily conserved role of PS in neuronal survival during aging. However, molecular pathways that interact with PS in neuronal survival remain unclear. To identify genetic modifiers that modulate PS-dependent neuronal survival, we developed a new DrosophilaPsn model that exhibits age-dependent neurodegeneration and increases of apoptosis. Following a bioinformatic analysis, we tested top ranked candidate genes by selective knockdown (KD) of each gene in neurons using two independent RNAi lines in Psn KD models. Interestingly, 4 of the 9 genes enhancing neurodegeneration in Psn KD flies are involved in lipid transport and metabolism. Specifically, neuron-specific KD of lipophorin receptors, lpr1 and lpr2, dramatically worsens neurodegeneration in Psn KD flies, and overexpression of lpr1 or lpr2 does not alleviate Psn KD-induced neurodegeneration. Furthermore, lpr1 or lpr2 KD alone also leads to neurodegeneration, increased apoptosis, climbing defects, and shortened lifespan. Lastly, heterozygotic deletions of lpr1 and lpr2 or homozygotic deletions of lpr1 or lpr2 similarly lead to age-dependent neurodegeneration and further exacerbate neurodegeneration in Psn KD flies. These findings show that LpRs modulate Psn-dependent neuronal survival and are critically important for neuronal integrity in the aging brain.
lipophorin_receptors_genetically_modulate_neurodegeneration_caused_by_reduction_of_psn_expression_in_the_aging_drosophila_brain.pdf
2023
Updates to the Alliance of Genome Resources Central Infrastructure Alliance of Genome Resources Consortium. bioRxiv. 2023;Nov 22 (2023.11.20.567935) :doi: 10.1101/2023.11.20.567935. Abstract
The Alliance of Genome Resources (Alliance) is an extensible coalition of knowledgebases focused on the genetics and genomics of intensively-studied model organisms. The Alliance is organized as individual knowledge centers with strong connections to their research communities and a centralized software infrastructure, discussed here. Model organisms currently represented in the Alliance are budding yeast, C. elegansDrosophila, zebrafish, frog, laboratory mouse, laboratory rat, and the Gene Ontology Consortium. The project is in a rapid development phase to harmonize knowledge, store it, analyze it, and present it to the community through a web portal, direct downloads, and APIs. Here we focus on developments over the last two years. Specifically, we added and enhanced tools for browsing the genome (JBrowse), downloading sequences, mining complex data (AllianceMine), visualizing pathways, full-text searching of the literature (Textpresso), and sequence similarity searching (SequenceServer). We enhanced existing interactive data tables and added an interactive table of paralogs to complement our representation of orthology. To support individual model organism communities, we implemented species-specific “landing pages” and will add disease-specific portals soon; in addition, we support a common community forum implemented in Discourse. We describe our progress towards a central persistent database to support curation, the data modeling that underpins harmonization, and progress towards a state-of-the art literature curation system with integrated Artificial Intelligence and Machine Learning (AI/ML).
updates_to_the_alliance_of_genome_resources_central_infrastructure_alliance_of_genome_resources_consortium.pdf
Song S, Cho B, Weiner A, Nissen SB, Naharros IO, Bosch PS, et al. Protein phosphatase 1 regulates core PCP signaling. EMBO Reports. 2023;Nov (17) :e56997. Abstract
Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
protein_phosphatase_1_regulates_core_pcp_signaling.pdf
Mohr S, Kim A-R, Hu Y, Perrimon N. Finding information about uncharacterized Drosophila melanogaster genes. Genetics. 2023;10.1093/genetics/iyad187. iyad187.pdf
Bosch J, Keith N, Escobedo F, Fisher WF, LaGraff JT, Rabasco J, et al. Molecular and functional characterization of the Drosophila melanogaster conserved smORFeome. Cell Reports. 2023;42 (113311) :doi: 10.1016/j.celrep.2023.113311. PMID: 37889754. Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
molecular_and_functional_characterization_of_the_drosophila_melanogaster_conserved_smorfome.pdf
Sun X, Shen J, Perrimon N, Kong X, Wang D. The endoribonuclease Arlr is required to maintain lipid homeostasis by downregulating lipolytic genes during aging. Nature Communications. 2023;14 (6254). s41467-023-42042-7.pdf
Petsakou A, Liu Y, Liu Y, Comjean A, Hu Y, Perrimon N. Cholinergic neurons trigger epithelial Ca2+ currents to heal the gut. Nature. 2023;Sep 18 :doi: 10.1038/s41586-023-06627-y. Abstract
A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the etiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that down-regulation of the conserved cholinergic enzyme Acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific TNF/Egr5-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+ that spreads in the epithelium through Inx2/Inx7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki/Yap activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.
cholinergic_neurons_trigger_epithelial_ca2_currents_to_heal_the_gut.pdf
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, et al. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nature Communications. 2023;Aug 15 (14(1) :4943. Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
reptor_and_crebrf_encode_key_regulators_of_muscle_energy_metabolism.pdf
Coleman-Gosser N, Raghuvansh S, Stitzinger S, Hu T, Chen W, Luhur A, et al. Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila research. Elife. 2023;Jul 20 (12) :e85814. Abstract
Expression of activated Ras, RasV12, provides Drosophila cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here, we used lineage-restricted RasV12 expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad RasV12 expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type-specific genes and the expected alignment with single-cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Drosophila Genomic Resource Center.
elife-85814.pdf
Li Y, Zhou X, Ding G, Zhao P, Tan K, Cheng L, et al. Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discovery. 2023;9 (1) :49. Abstract
Severe sleep deprivation (SD) has been highly associated with systemic energy wasting, such as lipid loss and glycogen depletion. Despite immune dysregulation and neurotoxicity observed in SD animals, whether and how the gut-secreted hormones participate in SD-induced disruption of energy homeostasis remains largely unknown. Using Drosophila as a conserved model organism, we characterize that production of intestinal Allatostatin A (AstA), a major gut-peptide hormone, is robustly increased in adult flies bearing severe SD. Interestingly, the removal of AstA production in the gut using specific drivers significantly improves lipid loss and glycogen depletion in SD flies without affecting sleep homeostasis. We reveal the molecular mechanisms whereby gut AstA promotes the release of an adipokinetic hormone (Akh), an insulin counter-regulatory hormone functionally equivalent to mammalian glucagon, to mobilize systemic energy reserves by remotely targeting its receptor AstA-R2 in Akh-producing cells. Similar regulation of glucagon secretion and energy wasting by AstA/galanin is also observed in SD mice. Further, integrating single-cell RNA sequencing and genetic validation, we uncover that severe SD results in ROS accumulation in the gut to augment AstA production via TrpA1. Altogether, our results demonstrate the essential roles of the gut-peptide hormone AstA in mediating SD-associated energy wasting.
gut_asta_mediates_sleep_deprivation-induced_energy_wasting_in_drosophila.pdf
Ewen-Campen B, Luan H, Xu J, Singh R, Joshi N, Thakkar T, et al. split-intein Gal4 provides intersectional genetic labeling that is repressible by Gal80. PNAS. 2023;120 (24) :e2304730120. Abstract
The  split-Gal4  system  allows  for  intersectional  genetic  labeling  of  highly  specific  cell types and tissues in Drosophila. However, the existing split-Gal4 system, unlike the  standard  Gal4  system,  cannot  be  repressed  by  Gal80,  and  therefore  cannot  be  controlled temporally. This lack of temporal control precludes split-Gal4 experiments in  which  a  genetic  manipulation  must  be  restricted  to  specific  timepoints.  Here,  we  describe  a  split-Gal4  system  based  on  a  self-excising  split-intein,  which  drives  transgene expression as strongly as the current split-Gal4 system and Gal4 reagents, yet which is repressible by Gal80. We demonstrate the potent inducibility of “split-intein Gal4” in vivo using both fluorescent reporters and via reversible tumor induction in the gut. Further, we show that our split-intein Gal4 can be extended to the drug-inducible GeneSwitch  system,  providing  an  independent  method  for  intersectional  labeling  with inducible control. We also show that the split-intein Gal4 system can be used to  generate  highly  cell  type–specific  genetic  drivers  based  on  in  silico  predictions  generated by single-cell RNAseq (scRNAseq) datasets, and we describe an algorithm (“Two  Against  Background”  or  TAB)  to  predict  cluster-specific  gene  pairs  across  multiple tissue-specific scRNA datasets. We provide a plasmid toolkit to efficiently create  split-intein  Gal4  drivers  based  on  either  CRISPR  knock-ins  to  target  genes  or using enhancer fragments. Altogether, the split-intein Gal4 system allows for the creation of highly specific intersectional genetic drivers that are inducible/repressible.
pnas.2304730120.pdf

Pages