Perrimon N, Häcker U. Wingless, hedgehog and heparan sulfate proteoglycans. Development. 2004;131 (11) :2509-11; author reply 2511-3. 2004_Dev_Hacker.pdf
Cherry S, Perrimon N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat Immunol. 2004;5 (1) :81-7. Abstract

The identification of host factors that control susceptibility to infection has been hampered by a lack of amenable genetic systems. We established an in vivo model to determine the host factors that control pathogenesis and identified viral entry as a rate-limiting step for infection. We infected Drosophila melanogaster cells and adults with drosophila C virus and found that the clathrin-mediated endocytotic pathway is essential for both infection and pathogenesis. Heterozygosity for mutations in genes involved in endocytosis is sufficient to protect flies from pathogenicity, indicating the exquisite sensitivity and dependency of the virus on this pathway. Thus, this virus model provides a sensitive and efficient approach for identifying components required for pathogenesis.

2004_Nat Immuno_Cherry.pdf Supplement.pdf
Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science. 2004;303 (5659) :832-5. Abstract

A crucial aim upon completion of whole genome sequences is the functional analysis of all predicted genes. We have applied a high-throughput RNA-interference (RNAi) screen of 19,470 double-stranded (ds) RNAs in cultured cells to characterize the function of nearly all (91%) predicted Drosophila genes in cell growth and viability. We found 438 dsRNAs that identified essential genes, among which 80% lacked mutant alleles. A quantitative assay of cell number was applied to identify genes of known and uncharacterized functions. In particular, we demonstrate a role for the homolog of a mammalian acute myeloid leukemia gene (AML1) in cell survival. Such a systematic screen for cell phenotypes, such as cell viability, can thus be effective in characterizing functionally related genes on a genome-wide scale.

2004_Science_Boutros.pdf Supplement.pdf
Brückner K, Kockel L, Duchek P, Luque CM, Rørth P, Perrimon N. The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell. 2004;7 (1) :73-84. Abstract

The Drosophila PDGF/VEGF receptor (PVR) has known functions in the guidance of cell migration. We now demonstrate that during embryonic hematopoiesis, PVR has a role in the control of antiapoptotic cell survival. In Pvr mutants, a large fraction of the embryonic hemocyte population undergoes apoptosis, and the remaining blood cells cannibalistically phagocytose their dying peers. Consequently, total hemocyte numbers drop dramatically during embryogenesis, and large aggregates of engorged macrophages carrying multiple apoptotic corpses form. Hemocyte-specific expression of the pan-caspase inhibitor p35 in Pvr mutants eliminates hemocyte aggregates and restores blood cell counts and morphology. Additional rescue experiments suggest involvement of the Ras pathway in PVR-mediated blood cell survival. In cell culture, we demonstrate that PVR directly controls survival of a hemocyte cell line. This function of PVR shows striking conservation with mammalian hematopoiesis and establishes Drosophila as a model to study hematopoietic cell survival in development and disease.

2004_Dev Cell_Bruckner.pdf Supplement.pdf
Schlesinger A, Kiger A, Perrimon N, Shilo B-Z. Small wing PLCgamma is required for ER retention of cleaved Spitz during eye development in Drosophila. Dev Cell. 2004;7 (4) :535-45. Abstract

The Drosophila EGF receptor ligand Spitz is cleaved by Rhomboid to generate an active secreted molecule. Surprisingly, when a cleaved variant of Spitz (cSpi) was expressed, it accumulated in the ER, both in embryos and in cell culture. A cell-based RNAi screen for loss-of-function phenotypes that alleviate ER accumulation of cSpi identified several genes, including the small wing (sl) gene encoding a PLCgamma. sl mutants compromised ER accumulation of cSpi in embryos, yet they exhibit EGFR hyperactivation phenotypes predominantly in the eye. Spi processing in the eye is carried out primarily by Rhomboid-3/Roughoid, which cleaves Spi in the ER, en route to the Golgi. The sl mutant phenotype is consistent with decreased cSpi retention in the R8 cells. Retention of cSpi in the ER provides a novel mechanism for restricting active ligand levels and hence the range of EGFR activation in the developing eye.

2004_Dev Cell_Schlesinger.pdf Supplement.pdf
Zeidler MP, Tan C, Bellaiche Y, Cherry S, Häder S, Gayko U, et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol. 2004;22 (7) :871-6. Abstract

Conditional or temperature-sensitive (TS) alleles represent useful tools with which to investigate gene function. Indeed, much of our understanding of yeast has relied on temperature-sensitive mutations which, when available, also provide important insights into other model systems. However, the rarity of temperature-sensitive alleles and difficulty in identifying them has limited their use. Here we describe a system to generate temperature-sensitive alleles based on conditionally active inteins. We have identified temperature-sensitive splicing variants of the yeast Saccharomyces cerevisiae vacuolar ATPase subunit (VMA) intein inserted within Gal4 and transferred these into Gal80. We show that Gal80-intein(TS) is able to efficiently provide temporal regulation of the Gal4/upstream activation sequence (UAS) system in a temperature-dependent manner in Drosophila melanogaster. Given the minimal host requirements necessary for temperature-sensitive intein splicing, this technique has the potential to allow the generation and use of conditionally active inteins in multiple host proteins and model systems, thereby widening the use of temperature-sensitive alleles for functional protein analysis.

2004_Nat Biotech_Zeidler.pdf Supplement.pdf
Baeg G-H, Selva EM, Goodman RM, Dasgupta R, Perrimon N. The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. Dev Biol. 2004;276 (1) :89-100. Abstract

We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient.

2004_Dev Bio_Baeg.pdf
Sinenko SA, Kim EK, Wynn R, Manfruelli P, Ando I, Wharton KA, et al. Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. Dev Biol. 2004;273 (1) :48-62. Abstract

To identify novel factors involved in Drosophila hematopoiesis, we screened a collection of lethal recessive mutations that also affected normal hemocyte composition in larvae. We present the characterization of the gene yantar (ytr) for which we isolated null and hypomorphic mutations that were associated with severe defects in hemocyte differentiation and proliferation; ytr is predominantly expressed in the hematopoietic tissue during larval development and encodes an evolutionary conserved protein which is predominantly localized in the nucleus. The hematopoietic phenotype in ytr mutants is consistent with a defect or block in differentiation of precursor hemocytes: mutant larvae have enlarged lymph glands (LGs) and have an excess of circulating hemocytes. In addition, many cells exhibit both lamellocyte and crystal cell markers. Ytr function has been preserved in evolution as hematopoietic specific expression of the Drosophila or mouse Ytr proteins rescue the differentiation defects in mutant hemocytes.

2004_Dev Bio_Sinenko.pdf
Perrimon N, Hymen T. RNA interference: Mechanisms and Applications. Cahier Les Treilles; 2004. 2004_Treilles_Perrimon.pdf
Duffy JB, Perrimon N. The UAS/GAL4 system for tissue-specific analysis of EGFR gene function in Drosophila melanogaster. In: Marí-Beffa M, Knight J. Key Experiments in Practical Developmental Biology. Cambridge University Press; 2004. p. 269-281.
Eggert US, Kiger AA, Richter C, Perlman ZE, Perrimon N, Mitchison TJ, et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2004;2 (12) :e379. Abstract

Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways.

2004_PLOS Bio_Eggert.pdf Supplemental
Perkins L, Perrimon N. Liz and Norbert at the movies. Development. 2003;130 (23) :5556-5557. 2003_Dev_Perkins.pdf
Gibson MC, Perrimon N. Apicobasal polarization: epithelial form and function. Curr Opin Cell Biol. 2003;15 (6) :747-52. Abstract

The structure and function of epithelial sheets generally depend on apicobasal polarization, which is achieved and maintained by linking asymmetrically distributed intercellular junctions to the cytoskeleton of individual cells. Recent studies in both Drosophila and vertebrate epithelia have yielded new insights into the conserved mechanisms by which apicobasal polarity is established and maintained during development. In mature polarized epithelia, apicobasal polarity is important for the establishment of adhesive junctions and the formation of a paracellular diffusion barrier that prevents the movement of solutes across the epithelium. Recent findings show that segregation of ligand and receptor with one on each side of this barrier can be a crucial regulator of cell-cell signaling events.

2003_Cell Bio_Gibson.pdf
Nagy A, Perrimon N, Sandmeyer S, Plasterk R. Tailoring the genome: the power of genetic approaches. Nat Genet. 2003;33 Suppl :276-84. Abstract

In the last century, genetics has developed into one of the most powerful tools for addressing basic questions concerning inheritance, development, individual and social operations and death. Here we summarize the current approaches to these questions in four of the most advanced models organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse). The genomes of each of these four models have been sequenced, and all have well developed methods of efficient genetic manipulations.

2003_Nat Gene_Nagy.pdf
Bashirullah A, Pasquinelli AE, Kiger AA, Perrimon N, Ruvkun G, Thummel CS. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev Biol. 2003;259 (1) :1-8. Abstract

The lin-4 and let-7 small temporal RNAs play a central role in controlling the timing of Caenorhabditis elegans cell fate decisions. let-7 has been conserved through evolution, and its expression correlates with adult development in bilateral animals, including Drosophila [Nature 408 (2000), 86]. The best match for lin-4 in Drosophila, miR-125, is also expressed during pupal and adult stages of Drosophila development [Curr. Biol. 12 (2002), 735]. Here, we ask whether the steroid hormone ecdysone induces let-7 or miR-125 expression at the onset of metamorphosis, attempting to link a known temporal regulator in Drosophila with the heterochronic pathway defined in C. elegans. We find that let-7 and miR-125 are coordinately expressed in late larvae and prepupae, in synchrony with the high titer ecdysone pulses that initiate metamorphosis. Unexpectedly, however, their expression is neither dependent on the EcR ecdysone receptor nor inducible by ecdysone in cultured larval organs. Although let-7 and miR-125 can be induced by ecdysone in Kc tissue culture cells, their expression is significantly delayed relative to that seen in the animal. let-7 and miR-125 are encoded adjacent to one another in the genome, and their induction correlates with the transient appearance of an approximately 500-nt RNA transcribed from this region, providing a mechanism to explain their precise coordinate regulation. We conclude that a common precursor RNA containing both let-7 and miR-125 is induced independently of ecdysone in Drosophila, raising the possibility of a temporal signal that is distinct from the well-characterized ecdysone-EcR pathway.

2003_Dev Bio_Bashirullah.pdf
Micchelli CA, Esler WP, Kimberly TW, Jack C, Berezovska O, Kornilova A, et al. Gamma-secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. FASEB J. 2003;17 (1) :79-81. Abstract

Signaling from the Notch (N) receptor is essential for proper cell-fate determinations and tissue patterning in all metazoans. N signaling requires a presenilin (PS)-dependent transmembrane-cleaving activity that is closely related or identical to the gamma-secretase proteolysis of the amyloid-beta precursor protein (APP) involved in Alzheimer's disease pathogenesis. Here, we show that N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine t-butyl ester, a potent gamma-secretase inhibitor reported to reduce amyloid-beta levels in transgenic mice, prevents N processing, translocation, and signaling in cell culture. This compound also induces developmental defects in Drosophila remarkably similar to those caused by genetic reduction of N. The appearance of this phenocopy depends on the timing and dose of compound exposure, and effects on N-dependent signaling molecules established its biochemical mechanism of action in vivo. Other gamma-secretase inhibitors caused similar effects. Thus, the three-dimensional structure of the drug-binding site(s) in Drosophila gamma-secretase is remarkably conserved vis-à-vis the same site(s) in the mammalian enzyme. These results show that genetics and developmental biology can help elucidate the in vivo site of action of pharmacological agents and suggest that organisms such as Drosophila may be used as simple models for in vivo prescreening of drug candidates.

Bilder D, Schober M, Perrimon N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol. 2003;5 (1) :53-8. Abstract

Polarized cells contain numerous membrane domains, but it is unclear how the formation of these domains is coordinated to create a single integrated cell architecture. Genetic screens of Drosophila melanogaster embryos have identified three complexes, each containing one of the PDZ domain proteins--Stardust (Sdt), Bazooka (Baz) and Scribble (Scrib)--that control epithelial polarity and formation of zonula adherens. We find that these complexes can be ordered into a single regulatory hierarchy that is initiated by cell adhesion-dependent recruitment of the Baz complex to the zonula adherens. The Scrib complex represses apical identity along basolateral surfaces by antagonizing Baz-initiated apical polarity. The Sdt-containing Crb complex is recruited apically by the Baz complex to counter antagonistic Scrib activity. Thus, a finely tuned balance between Scrib and Crb complex activity sets the limits of the apical and basolateral membrane domains and positions cell junctions. Our data suggest a model in which the maturation of epithelial cell polarity is driven by integration of the sequential activities of PDZ-based protein complexes.

2003_Nat Cell Bio_Bilder.pdf Supplement.pdf
Ghiglione C, Amundadottir L, Andresdottir M, Bilder D, Diamonti JA, Noselli S, et al. Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development. 2003;130 (18) :4483-93. Abstract

The transmembrane protein Kekkon 1 (Kek1) has previously been shown to act in a negative feedback loop to downregulate the Drosophila Epidermal Growth Factor Receptor (DER) during oogenesis. We show that this protein plays a similar role in other DER-mediated developmental processes. Structure-function analysis reveals that the extracellular Leucine-Rich Repeat (LRR) domains of Kek1 are critical for its function through direct association with DER, whereas its cytoplasmic domain is required for apical subcellular localization. In addition, the use of chimeric proteins between Kek1 extracellular and transmembrane domains fused to DER intracellular domain indicates that Kek1 forms an heterodimer with DER in vivo. To characterize more precisely the mechanism underlying the Kek1/DER interaction, we used mammalian ErbB/EGFR cell-based assays. We show that Kek1 is capable of physically interacting with each of the known members of the mammalian ErbB receptor family and that the Kek1/EGFR interaction inhibits growth factor binding, receptor autophosphorylation and Erk1/2 activation in response to EGF. Finally, in vivo experiments show that Kek1 expression potently suppresses the growth of mouse mammary tumor cells derived from aberrant ErbB receptors activation, but does not interfere with the growth of tumor cells derived from activated Ras. Our results underscore the possibility that Kek1 may be used experimentally to inhibit ErbB receptors and point to the possibility that, as yet uncharacterized, mammalian transmembrane LRR proteins might act as modulators of growth factor signalling.

Sasamura T, Sasaki N, Miyashita F, Nakao S, Ishikawa HO, Ito M, et al. neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development. 2003;130 (20) :4785-95. Abstract

Notch signalling, which is highly conserved from nematodes to mammals, plays crucial roles in many developmental processes. In the Drosophila embryo, deficiency in Notch signalling results in neural hyperplasia, commonly referred to as the neurogenic phenotype. We identify a novel maternal neurogenic gene, neurotic, and show that it is essential for Notch signalling. neurotic encodes a Drosophila homolog of mammalian GDP-fucose protein O-fucosyltransferase, which adds fucose sugar to epidermal growth factor-like repeats and is known to play a crucial role in Notch signalling. neurotic functions in a cell-autonomous manner, and genetic epistasis tests reveal that Neurotic is required for the activity of the full-length but not an activated form of Notch. Further, we show that neurotic is required for Fringe activity, which encodes a fucose-specific beta1, 3 N-acetylglucosaminyltransferase, previously shown to modulate Notch receptor activity. Finally, Neurotic is essential for the physical interaction of Notch with its ligand Delta, and for the ability of Fringe to modulate this interaction in Drosophila cultured cells. We present an unprecedented example of an absolute requirement of a protein glycosylation event for a ligand-receptor interaction. Our results suggest that O-fucosylation catalysed by Neurotic is also involved in the Fringe-independent activities of Notch and may provide a novel on-off mechanism that regulates ligand-receptor interactions.

Adám G, Perrimon N, Noselli S. The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development. 2003;130 (11) :2397-406. Abstract

In vertebrate development, the establishment of left-right asymmetry is essential for sidedness and the directional looping of organs like the heart. Both the nodal pathway and retinoic acid play major and conserved regulatory roles in these processes. We carried out a novel screen in Drosophila to identify mutants that specifically affect the looping of left-right asymmetric organs. We report the isolation of spin, a novel mutant in which the looping of the genitalia and spermiduct are incomplete; under-rotation of the genitalia indicates that spin controls looping morphogenesis but not direction, thus uncoupling left-right asymmetry and looping morphogenesis. spin is a novel, rotation-specific allele of the fasciclin2 (Fas2) gene, which encodes a cell-adhesion protein involved in several aspects of neurogenesis. In spin mutants, the synapses connecting specific neurosecretory cells to the corpora allata are affected. The corpus allatum is part of the ring gland and is involved in the control of juvenile hormone titers during development. Our genetic and pharmacological results indicate that Fas2(spin) rotation defects are linked to an abnormal endocrine function and an elevated level of juvenile hormone. As juvenile hormone is an insect sesquiterpenoid related to retinoic acid, these results establish a new genetic model for studying organ looping and demonstrate an evolutionarily conserved role for terpenoids in this process.