Publications

2019
AGRC. The Alliance of Genome Resources: Building a Modern Data Ecosystem for Model Organism Databases. Genetics. 2019;213 (4) :1189-1196. Abstract
Model organisms are essential experimental platforms for discovering gene functions, defining protein and genetic networks, uncovering functional consequences of human genome variation, and for modeling human disease. For decades, researchers who use model organisms have relied on Model Organism Databases (MODs) and the Gene Ontology Consortium (GOC) for expertly curated annotations, and for access to integrated genomic and biological information obtained from the scientific literature and public data archives. Through the development and enforcement of data and semantic standards, these genome resources provide rapid access to the collected knowledge of model organisms in human readable and computation-ready formats that would otherwise require countless hours for individual researchers to assemble on their own. Since their inception, the MODs for the predominant biomedical model organisms [ (laboratory mouse), , , , , and ] along with the GOC have operated as a network of independent, highly collaborative genome resources. In 2016, these six MODs and the GOC joined forces as the Alliance of Genome Resources (the Alliance). By implementing shared programmatic access methods and data-specific web pages with a unified "look and feel," the Alliance is tackling barriers that have limited the ability of researchers to easily compare common data types and annotations across model organisms. To adapt to the rapidly changing landscape for evaluating and funding core data resources, the Alliance is building a modern, extensible, and operationally efficient "knowledge commons" for model organisms using shared, modular infrastructure.
2019_Genetics_AGRC.pdf
Zirin J, Hu Y, Liu L, Yang-Zhou D, Colbeth R, Yan D, et al. Large-scale transgenic Drosophila resource collections for loss- and gain-of-function studies. BioRxiv [Internet]. 2019; Publisher's Version 2019_bioRxiv_Zirin.pdf Supplemental Tables.zip
Chen C-L, Rodiger J, Chung V, Viswanatha R, Mohr SE, Hu Y, et al. SNP-CRISPR: a web tool for SNP-specific genome editing. BioRxiv [Internet]. 2019; Publisher's VersionAbstract

Abstract

CRISPR-Cas9 is a powerful genome editing technology in which a short guide RNA (sgRNA) confers target site specificity to achieve Cas9-mediated genome editing. Numerous sgRNA design tools have been developed based on reference genomes for humans and model organisms. However, existing resources are not optimal as genetic mutations or single nucleotide polymorphisms (SNPs) within the targeting region affect the efficiency of CRISPR-based approaches by interfering with guide-target complementarity. To facilitate identification of sgRNAs (1) in non-reference genomes, (2) across varying genetic backgrounds, or (3) for specific targeting of SNP-containing alleles, for example, disease relevant mutations, we developed a web tool, SNP-CRISPR (https://www.flyrnai.org/tools/snp_crispr/). SNP-CRISPR can be used to design sgRNAs based on public variant data sets or user-identified variants. In addition, the tool computes efficiency and specificity scores for sgRNA designs targeting both the variant and the reference. Moreover, SNP-CRISPR provides the option to upload multiple SNPs and target single or multiple nearby base changes simultaneously with a single sgRNA design. Given these capabilities, SNP-CRISPR has a wide range of potential research applications in model systems and potential applications for design of sgRNAs for disease-associated mutant correction.

2019_bioRxiv_Chen.pdf
Viswanatha R, Brathwaite R, Hu Y, Li Z, Rodiger J, Merckaert P, et al. Pooled CRISPR Screens in Drosophila Cells. Current Protocols in Molecular Biology. 2019;129. Abstract

High-throughput screens in Drosophila melanogaster cell lines have led to discovery of conserved gene functions related to signal transduction, host pathogen interactions, ion transport, and more. CRISPR/Cas9 technology has opened the door to new types of large-scale cell-based screens. Whereas array format screens require liquid handling automation and assay miniaturization, pooled-format screens, in which reagents are introduced at random and in bulk, can be done in a standard lab setting. We provide a detailed protocol for conducting and evaluating genome-wide CRISPR single guide RNA (sgRNA) pooled screens in Drosophila S2R+ cultured cells. Specifically, we provide step-by-step instructions for library design and production, optimization of cytotoxin-based selection assays, genome-scale screening, and data analysis. This type of project takes ~3 months to complete. Results can be used in follow-up studies performed in vivo in Drosophila, mammalian cells, and/or other systems.

2019_CPMB_Viswanatha.pdf
Bosch JA, Colbeth R, Zirin J, Perrimon N. Gene Knock-Ins in Using Homology-Independent Insertion of Universal Donor Plasmids. Genetics. 2019;Abstract
Targeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint homology-independent knock-in method for , which uses CRISPR/Cas9 and non-homologous end joining (NHEJ) to insert universal donor plasmids into the genome. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker into seven genes in the fly germ line, producing heritable loss of function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, indels always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate insertions in four genes that serve as in vivo expression reporters. Therefore, homology-independent insertion in is a fast and simple alternative to HDR that will enable researchers to dissect gene function.
2019_Genetics_Bosch.pdf
Kanca O, Zirin J, Garcia-Marques J, Knight SM, Yang-Zhou D, Amador G, et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. Elife. 2019;8. Abstract
We previously reported a CRISPR-mediated knock-in strategy into introns of genes, generating an - transgenic library for multiple uses (Lee et al., 2018b). The method relied on double stranded DNA (dsDNA) homology donors with ~1 kb homology arms. Here, we describe three new simpler ways to edit genes in flies. We create single stranded DNA (ssDNA) donors using PCR and add 100 nt of homology on each side of an integration cassette, followed by enzymatic removal of one strand. Using this method, we generated GFP-tagged proteins that mark organelles in S2 cells. We then describe two dsDNA methods using cheap synthesized donors flanked by 100 nt homology arms and gRNA target sites cloned into a plasmid. Upon injection, donor DNA (1 to 5 kb) is released from the plasmid by Cas9. The cassette integrates efficiently and precisely . The approach is fast, cheap, and scalable.
2019_eLife_Kanca.pdf
Nicholson HE, Tariq Z, Housden BE, Jennings RB, Stransky LA, Perrimon N, et al. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci Signal. 2019;12 (601). Abstract
Inactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
2019_SciSignal_Nicholson.pdf Supplement.pdf Supplemental Data Files.zip
Alliance-of-Genome-Resources-Consortium. Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Res. 2019;Abstract
The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource.
2019_NucAcidsRes_AGRC.pdf
Mohr SE, Perrimon N. Drosophila melanogaster: a simple system for understanding complexity. Dis Model Mech. 2019;12 (10). Abstract
Understanding human gene function is fundamental to understanding and treating diseases. Research using the model organism benefits from a wealth of molecular genetic resources and information useful for efficient experimentation. Moreover, offers a balance as a relatively simple organism that nonetheless exhibits complex multicellular activities. Recent examples demonstrate the power and continued promise of research to further our understanding of conserved gene functions.
2019_DMM_Mohr.pdf
Saavedra P, Perrimon N. Drosophila as a Model for Tumor-Induced Organ Wasting. Adv Exp Med Biol. 2019;1167 :191-205. Abstract
In humans, cancer-associated cachexia is a complex syndrome that reduces the overall quality of life and survival of cancer patients, particularly for those undergoing chemotherapy. The most easily observable sign of cachexia is organ wasting, the dramatic loss of skeletal muscle and adipose tissue mass. Estimates suggest that 80% of patients in advanced stages of cancer show signs of the syndrome and about 20% of cancer patients die directly of cachexia. Because there is no treatment or drug available to ameliorate organ wasting induced by cancer, cachexia is a relevant clinical problem. However, it is unclear how cachexia is mediated, what factors drive interactions between tumors and host tissues, and which markers of cachexia might be used to allow early detection before the observable signs of organ wasting. In this chapter, we review the current mammalian models of cachexia and the need to use new models of study. We also explain recent developments in Drosophila as a model for studying organ wasting induced by tumors and how fly studies can help unravel important mechanisms that drive cachexia. In particular, we discuss what lessons have been learned from tumor models recently reported to induce systemic organ wasting in Drosophila.
2019_AdvExpMedBiol_Saavedra.pdf
Kanca O, Zirin J, Garcia-Marques J, Knight S, Yang-Zhou D, Amador G, et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. BioRxiv [Internet]. 2019; Publisher's Version 2019_BioRxiv_Kanca.pdf
Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 2019;:e13034. Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
2019_Aging Cell_Parkhitko.pdf
Droujinine IA, Perrimon N. The Multidimensional Organization of Interorgan Communication Networks. Dev Cell. 2019;50 (4) :395-396. Abstract
Secreted molecules coordinate organ function. In a recent issue of Cell, Hudry et al. (2019) uncover a Drosophila testis-midgut interaction via cytokine and citrate signaling that regulates intestinal metabolism, spermatogenesis, and food intake. This impressive study is a striking example of the role of spatial organization in sex-specific interorgan communication.
2019_DevCell_Droujinine.pdf
Silver JT, Wirtz-Peitz F, Simões S, Pellikka M, Yan D, Binari R, et al. Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. J Cell Biol. 2019;Abstract
The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.
2019_JCB_Silver.pdf Supplement.pdf Supp. Videos.zip
Ahmad M, He L, Perrimon N. Regulation of insulin and adipokinetic hormone/glucagon production in flies. Wiley Interdiscip Rev Dev Biol. 2019;:e360. Abstract
Metabolic homeostasis is under strict regulation of humoral factors across various taxa. In particular, insulin and glucagon, referred to in Drosophila as Drosophila insulin-like peptides (DILPs) and adipokinetic hormone (AKH), respectively, are key hormones that regulate metabolism in most metazoa. While much is known about the regulation of DILPs, the mechanisms regulating AKH/glucagon production is still poorly understood. In this review, we describe the various factors that regulate the production of DILPs and AKH and emphasize the need for future studies to decipher how energy homeostasis is governed in Drosophila. This article is categorized under: Invertebrate Organogenesis > Flies Signaling Pathways > Global Signaling Mechanisms.
2019_WIRES_Ahmad.pdf
Zirin J, Ni X, Sack LM, Yang-Zhou D, Hu Y, Brathwaite R, et al. Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. Proc Natl Acad Sci U S A. 2019;Abstract
Aberrant MYC oncogene activation is one of the most prevalent characteristics of cancer. By overlapping datasets of genes that are insulin-responsive and also regulate nucleolus size, we enriched for Myc target genes required for cellular biosynthesis. Among these, we identified the aminoacyl tRNA synthetases (aaRSs) as essential mediators of Myc growth control in and found that their pharmacologic inhibition is sufficient to kill MYC-overexpressing human cells, indicating that aaRS inhibitors might be used to selectively target MYC-driven cancers. We suggest a general principle in which oncogenic increases in cellular biosynthesis sensitize cells to disruption of protein homeostasis.
2019_PNAS_Zirin.pdf Supplement.pdf Supp. Datasets.zip
Dumesic PA, Egan DF, Gut P, Tran MT, Parisi A, Chatterjee N, et al. An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metab. 2019;Abstract
Mitochondrial abundance and function are tightly controlled during metabolic adaptation but dysregulated in pathological states such as diabetes, neurodegeneration, cancer, and kidney disease. We show here that translation of PGC1α, a key governor of mitochondrial biogenesis and oxidative metabolism, is negatively regulated by an upstream open reading frame (uORF) in the 5' untranslated region of its gene (PPARGC1A). We find that uORF-mediated translational repression is a feature of PPARGC1A orthologs from human to fly. Strikingly, whereas multiple inhibitory uORFs are broadly present in fish PPARGC1A orthologs, they are completely absent in the Atlantic bluefin tuna, an animal with exceptionally high mitochondrial content. In mice, an engineered mutation disrupting the PPARGC1A uORF increases PGC1α protein levels and oxidative metabolism and confers protection from acute kidney injury. These studies identify a translational regulatory element governing oxidative metabolism and highlight its potential contribution to the evolution of organismal mitochondrial function.
2019_Cell Metab_Dumesic.pdf Supplement.zip
He L, Binari R, Huang J, Falo-Sanjuan J, Perrimon N. In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. Elife. 2019;8. Abstract
Fluorescent transcriptional reporters are widely used as signaling reporters and biomarkers to monitor pathway activities and determine cell type identities. However, a large amount of dynamic information is lost due to the long half-life of the fluorescent proteins. To better detect dynamics, fluorescent transcriptional reporters can be destabilized to shorten their half-lives. However, applications of this approach are limited due to significant reduction of signal intensities. To overcome this limitation, we enhanced translation of a destabilized fluorescent protein and demonstrate the advantages of this approach by characterizing spatio-temporal changes of transcriptional activities in . In addition, by combining a fast-folding destabilized fluorescent protein and a slow-folding long-lived fluorescent protein, we generated a dual-color transcriptional timer that provides spatio-temporal information about signaling pathway activities. Finally, we demonstrate the use of this transcriptional timer to identify new genes with dynamic expression patterns.
2019_eLife_He.pdf Supplement.zip
Strumillo MJ, Oplová M, Viéitez C, Ochoa D, Shahraz M, Busby BP, et al. Conserved phosphorylation hotspots in eukaryotic protein domain families. Nat Commun. 2019;10 (1) :1977. Abstract
Protein phosphorylation is the best characterized post-translational modification that regulates almost all cellular processes through diverse mechanisms such as changing protein conformations, interactions, and localization. While the inventory for phosphorylation sites across different species has rapidly expanded, their functional role remains poorly investigated. Here, we combine 537,321 phosphosites from 40 eukaryotic species to identify highly conserved phosphorylation hotspot regions within domain families. Mapping these regions onto structural data reveals that they are often found at interfaces, near catalytic residues and tend to harbor functionally important phosphosites. Notably, functional studies of a phospho-deficient mutant in the C-terminal hotspot region within the ribosomal S11 domain in the yeast ribosomal protein uS11 shows impaired growth and defective cytoplasmic 20S pre-rRNA processing at 16 °C and 20 °C. Altogether, our study identifies phosphorylation hotspots for 162 protein domains suggestive of an ancient role for the control of diverse eukaryotic domain families.
2019_Nat Comm_Strumillo.pdf Supplement.zip
Hunter GL, He L, Perrimon N, Charras G, Giniger E, Baum B. A role for actomyosin contractility in Notch signaling. BMC Biol. 2019;17 (1) :12. Abstract
BACKGROUND: Notch-Delta signaling functions across a wide array of animal systems to break symmetry in a sheet of undifferentiated cells and generate cells with different fates, a process known as lateral inhibition. Unlike many other signaling systems, however, since both the ligand and receptor are transmembrane proteins, the activation of Notch by Delta depends strictly on cell-cell contact. Furthermore, the binding of the ligand to the receptor may not be sufficient to induce signaling, since recent work in cell culture suggests that ligand-induced Notch signaling also requires a mechanical pulling force. This tension exposes a cleavage site in Notch that, when cut, activates signaling. Although it is not known if mechanical tension contributes to signaling in vivo, others have suggested that this is how endocytosis of the receptor-ligand complex contributes to the cleavage and activation of Notch. In a similar way, since Notch-mediated lateral inhibition at a distance in the dorsal thorax of the pupal fly is mediated via actin-rich protrusions, it is possible that cytoskeletal forces generated by networks of filamentous actin and non-muscle myosin during cycles of protrusion extension and retraction also contribute to Notch signaling. RESULTS: To test this hypothesis, we carried out a detailed analysis of the role of myosin II-dependent tension in Notch signaling in the developing fly and in cell culture. Using dynamic fluorescence-based reporters of Notch, we found that myosin II is important for signaling in signal sending and receiving cells in both systems-as expected if myosin II-dependent tension across the Notch-Delta complex contributes to Notch activation. While myosin II was found to contribute most to signaling at a distance, it was also required for maximal signaling between adjacent cells that share lateral contacts and for signaling between cells in culture. CONCLUSIONS: Together these results reveal a previously unappreciated role for non-muscle myosin II contractility in Notch signaling, providing further support for the idea that force contributes to the cleavage and activation of Notch in the context of ligand-dependent signaling, and a new paradigm for actomyosin-based mechanosensation.
2019_BMC Bio_Hunter.pdf Supplemental Files.zip

Pages