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SUMMARY

The intestine has evolved under constant environ-
mental stresses, because an animal may ingest
harmful pathogens or chemicals at any time during
its lifespan. Following damage, intestinal stem cells
(ISCs) regenerate the intestine by proliferating to
replace dying cells. ISCs from diverse animals are
remarkably similar, and the Wnt, Notch, and Hippo
signaling pathways, important regulators ofmamma-
lian ISCs, are conserved from flies to humans. Unex-
pectedly, we identified the transcription factor
period, a component of the circadian clock, to be crit-
ical for regeneration, which itself follows a circadian
rhythm. We discovered hundreds of transcripts that
are regulated by the clock during intestinal regenera-
tion, including components of stress response and
regeneration pathways. Disruption of clock compo-
nents leads to arrhythmic ISC divisions, revealing
their underappreciated role in the healing process.
INTRODUCTION

Although many pathways that are required for healing have been

discovered, little is known about how or whether healing is

synchronized with general processes that regulate an animal’s

homeostasis and behavior. The circadian clock is an ancient

molecular pathway that synchronizes organisms with daily envi-

ronmental cues (zeitgebers) such as light intensity and tempera-

ture oscillations (Borgs et al., 2009; Hardin, 2011). Circadian

rhythms are repeated over a 24 hr cycle, yet this chronological

aspect of cell state has received little attention in the field of

regenerative biology. For instance, many of the pathways that

regulate intestinal regeneration and intestinal stem cells (ISCs)

have been the subject of important studies (Biteau et al., 2011;

Casali and Batlle, 2009), but most of these studies did not

consider whether results obtained during one part of the day

occur at all times.

Circadian rhythms are thought to influence the cell cycle

(Borgs et al., 2009), and there is some evidence that the clock

plays a role in regeneration and proliferation. Hepatocyte cell

division exhibits rhythms and is delayed following hepatectomy

if circadian rhythms are disrupted (Matsuo et al., 2003). Earlier
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studies in the intestine indeed found a daily rhythmicity in cell

number and villus length (Qiu et al., 1994; Stevenson et al.,

1979), as well as proliferation (Al-Nafussi and Wright, 1982;

Potten et al., 1977), although clock mutants were not examined

and ISCs were not specifically identified in those reports.

Further, it was reported that metabolic processes display time-

of-day variation in the intestine (Pan and Hussain, 2009; Saito

et al., 1976; Scheving, 2000), and per mutation hastens tumori-

genesis in Wnt pathway-driven colorectal cancer in mice

(Wood et al., 2008). Finally, the degree of intestinal mucositis

displays time-of-day variability in cancer patients treated by

radiation (Shukla et al., 2010). This suggests that circadian

rhythms may influence the intestine’s regenerative response,

although the reasons for this remain a mystery.

RESULTS

The Drosophila Intestine Has a Circadian Clock
The intestinal biology of Drosophila parallels that of mammals

(Biteau et al., 2011; Casali and Batlle, 2009) and allows for func-

tional in vivo analyses to elucidate regenerative processes.

Drosophila ISCs divide to produce progenitors called entero-

blasts (EBs) that differentiate directly into absorptive enterocytes

(ECs) or secretory enteroendocrine cells (Figure 1A). We per-

formed a transgenic RNAi screen for transcription factors

required in Drosophila ISCs during regeneration (see Experi-

mental Procedures). It was previously shown that after damage

occurs, ISCs regenerate the intestine by proliferating to replace

dying cells (Biteau et al., 2011; Medema and Vermeulen, 2011).

Here we discovered that among the �600 genes tested, period

(per) was required for proliferation of adult ISCs following

damage by dextran-sodium sulfate (DSS), a chemical that

models inflammatory bowel diseases in flies and mice (Amche-

slavsky et al., 2009).

The Drosophila circadian pacemaker comprises the transcrip-

tion factor partners clock (clk) and cycle (cyc), which are nega-

tively regulated by per and timeless (tim; Hardin, 2011). One

transcriptional target of CLK/CYC is per itself, which represses

its own production and causes the cyclical transcriptional

rhythms that underlie circadian rhythms. The existence of inde-

pendent clocks throughout Drosophila tissues is known (Plautz

et al., 1997), and we confirmed the cyclical accumulation and

loss of per in the intestine when flies were kept on a 12 hr light/

12 hr dark (LD) regimen (all of the experiments described below

were performed under LD and chemical damage unless
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Figure 1. PER Cycles and Functions in the Damaged Intestine

(A) The ISC lineage. ISC, intestinal stem cell; EB, enteroblast; ee, enteroendocrine cell; EC, enterocyte.

(B) perRNA expression (qPCR) in the intestine over ZT, with ZT0 denoting when lights are turned on. The ry506 control normally shows circadian rhythms, but these

are absent in per01 mutants. Graph shows the average of two separate experiments (n = 15 guts/genotype/time point, expression normalized to ry506 ZT15,

relative to GAPDH RNA; error bars ± SEM).

(C) PER staining (red) shows nuclear accumulation in intestinal cells in the morning (ZT0) versus the evening (ZT12). Fibrillarin (green) marks the nucleolus, where

PER is weaker.

(D) PER protein levels are rhythmic in ISCs (arrows) labeled with Delta (Dl, red).

(E) When flies are maintained in LD conditions (see Figure S1C for schematic), control (ry506) intestinal mitoses peak at ZT0, in contrast to per01. AUAS-per rescue

construct expressed in ISCs using esg-Gal4 rescues this effect partially in the per01 background.

(F) Rhythms are present in Luciferase (esg > LucRNAi is esg-Gal4/+; UAS-dcr2/UAS-LucRNAi) controls, but PER knockdown in ISCs (esg > per RNAi is esg-Gal4/

+; UAS-dcr2/UAS-per RNAi) phenocopies per01.

(G) PER knockdown in ECs also disrupts circadian mitotic rhythms (genotypes as above but with myo1A-Gal4/+).

See also Figures S1, S2, S3, and S5.
otherwise noted). Quantitative RT-PCR (qRT-PCR) confirmed

that per mRNA accumulates in the early evening (zeitgeber

time 12–18 [ZT12–18]; Figures 1B and S1A), and staining for

PER confirmed its nuclear accumulation in the late night/early

morning (Figure 1C, ZT0). PER is expressed in the epithelial cells

of this tissue (the polyploid ECs as well as the diploid ISCs; Fig-

ures 1D and S1).
The Clock Gene per Regulates Rhythmic Intestinal
Regeneration
The per01 allele is a loss-of-function nonsense mutation (Hardin

et al., 1990). Although they are viable, per01 mutant animals do

not exhibit circadian gene expression or behavioral rhythmicity

(Figures 1B, S1, and S2). We assayed the regenerative response

of per01 ISCs following damage by DSS. Only the ISCs in the
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Drosophila intestine divide (Ohlstein and Spradling, 2006), and

mitotic ISCs were scored by phosphorylated histone H3 positiv-

ity. Control (ry506) ISCs show a peak inmitoses occurring at dawn

(Figure 1E, ZT0), the transition between night and day when PER

accumulates. This peak is absent in per01 intestines, which show

reduced mitoses at all time points (Figure 1E). A UAS-per trans-

gene, which restores circadian rhythms behaviorally when

expressed in pacemaker neurons (Figure S2), partially restored

the mitotic peak in per01 when expressed in ISCs using esg-

Gal4 (Amcheslavsky et al., 2009), but not in ECs using myo1A-

Gal4 (Jiang et al., 2009; Figure 1E). Importantly, the esg-Gal4

and myo1A-Gal4 drivers are not expressed in pacemaker

neurons, and do not rescue per01 arrhythmic behavior when

driving UAS-per (Figure S2). A characteristic of circadian

rhythms is their free-running nature (Hardin, 2011), which we

tested by shifting flies to constant darkness (DD) after LD entrain-

ment. PER expression rhythms and intestinal mitotic rhythms

perpetuate in DD, demonstrating their circadian nature (see

Figures S1F and S5A–S5C). Together, these results show that

ISCs divide according to a circadian rhythm in response to dam-

age, and that this response is per dependent.

Undamaged per01 intestines do not show obvious deficiencies

in epithelial cell types (Figures S3A and S3B) or rhythmic mitoses

(see Figure 4C). Both ISCs and ECs participate in regeneration

(Biteau et al., 2011), raising the question as to which cells are

responsible for the inability of per01 intestines to display mitotic

rhythms. A second important question is whether mitotic

rhythms in response to damage are linked to behavioral activity

or feeding (Xu et al., 2008). We validated a UAS-per RNAi

construct for its ability to reduce PER expression and abolish

circadian behavior rhythms (Figure S2). PER knockdown in

ISCs phenocopied the arrhythmic per01 intestine (Figure 1F)

and, strikingly, PER depletion in ECs also abolished ISC prolifer-

ation rhythms (Figure 1G). These phenotypes are not correlated

with circadian behavior (Figure S2) or feeding (Figures S3C and

S3D), which are rhythmic (although we do note an �1 hr circa-

dian period lengthening in the esg-Gal4 driver). Since only ISCs

divide in this tissue, per RNAi disruption in ISCs (Figure 1F)

accounts for the per01 phenotype (Figure 1E), whereas per

RNAi in ECs simply abolishes a peak at ZT0 (Figure 1G). These

results suggest that PER is required separately in both ISCs

and ECs to produce intestinal mitotic rhythms, and that these

rhythms are separate from feeding and behavioral rhythms.

Next, we generated per-deficient mutant clones to test

whether the defect associated with PER loss was cell autono-

mous. Following damage, per01 and per RNAi clones are slightly

smaller (Figure S4) and show reduced size over long periods of

time in the absence of acute damage. This suggests that PER

has a weaker ISC-autonomous role in initiating or boosting pro-

liferation following damage or stress, but that overall a stronger

nonautonomous role is predominant.

The Core Clock Functions during Intestinal
Regeneration
Because per and tim work together to inhibit clk/cyc, the out-

comes of CYC activity would be expected to oppose those of

PER. The cyc0 and tim0 loss-of-function mutants are also viable,

and also display altered intestinal mitotic rhythms in response to
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damage (Figures 2A and 2B). The expression of aUAS-cyc trans-

gene in ISCs (esg-Gal4) in the cyc0 background was able to

partially rescue this phenotype, but expression in ECs (myo1A-

Gal4) did not (Figure 2A). Although the cyc0 phenotype is the

opposite of the per01 phenotype, we note that the tim0 pheno-

type is not the same as that of per01, suggesting that tim may

have additional functions in this tissue. It is also possible that ge-

netic background plays a role in the level of mitoses observed in

these conditions. We tested the epistatic relationships between

these genes. The per01;tim0 double mutant displays the per01

phenotype (Figure 2C), and the cyc0;per01 double mutant dis-

plays the cyc0 phenotype (Figure 2D), as would be predicted

from the circadian clock transcriptional feedback loop, which

undergoes circadian rhythms in this tissue (Figure S1).We further

tested the requirement of CYC in the regenerative process by

expressing a functionally validated UAS-cyc RNAi construct

(Figures S2 and S3) in ISCs and ECs. CYC is required in both

of these cell types to produce mitotic rhythms, and the loss of

CYC in either ISCs (Figure 2E) or ECs (Figure 2F) abolished any

rhythms observed. Light levels entrain the circadian clock, and

when flies are exposed to light-only (LL) conditions, the rhythmic

nature of mitoses is abolished and remains constant at all time

points (Figures S5E–S5G). Altogether, these data confirm that

the circadian clock is required in both ISCs and their EC neigh-

bors for mitotic rhythms.

Bleocin is a potent DNA-damaging chemical that causes

apoptosis in the intestine (Amcheslavsky et al., 2009), and it

was applied to investigate the outcome of a circadian-deficient

damage response. Following Bleocin-induced damage, mitoses

in control versus cyc0 and per01 mutant flies show phenotypes

similar to those observed under DSS (Figure 2G). The cyc0

mutants exhibit reduced survival on Bleocin (Figure 2H) or DSS

(Figure S5), and per01 and tim0 show similar reduced survival

(Figures 2H, 2I, and S5). The knockdown of CYC or PER within

ISCs or ECs results in reduced survival on Bleocin (Figures 2J

and 2K). Hence, the disruption of the circadian clock either

throughout the body or only in ISCs or ECs negatively impacts

the survival of animals when the intestine is damaged.

Clock-Deficient ISCs Lag in the Cell Cycle during
Regeneration
The accumulation of mitotic cyc0 ISCs (Figure 2A) suggests that

loss of cyc throughout the animal causes ISCs to overproliferate

or stalls these cells in mitosis. An EdU uptake assay, which mea-

sures cells in S phase, revealed that control (ry506) ISCs show a

peak in S phase at ZT6. The cyc0 and per01 mutants do not

exhibit any peaks, and cyc0 mutants do not exhibit increased S

phase (Figures 3A and 3B). Hence, it is unlikely that cyc0 ISCs

overproliferate, and cyc RNAi clones also did not show an over-

proliferation phenotype (Figure S4).

We applied the FUCCI cell-cycle reporter (Nakajima et al.,

2011; Sakaue-Sawano et al., 2008), which accumulates mAG-

Geminin during S/G2/M phases (Azami Green positive), to deter-

mine cell-cycle states when circadian rhythms are absent in

ISCs. We expressed the FUCCI reporter along with cyc RNAi

or per RNAi with esg-Gal4, and identified ISCs using Dl+. The

control RNAi lines show a gradual accumulation of S/G2/

M-phase-positive ISCs up to ZT18, when these cells divide



Figure 2. The Circadian Clock Is Required in the Damaged Intestine

(A and B) When flies are maintained in LD conditions, control (ry506 and y,w) intestinal mitoses peak at ZT0, in contrast to cyc0 and tim0 mutants. A UAS-cyc

construct expressed in ISCs (esg-Gal4) partially restores this rhythm in the cyc0 background. ry506 data are duplicated from Figure 1E.

(C and D) per01; tim0 double-mutant intestines resemble the per01mutant phenotype. per01; cyc0 double-mutant intestines resemble the cyc0mutant phenotype.

Control and mutant data are duplicated from Figures 1E, 2A, and 2B.

(E and F) CYC knockdown in ISCs (esg > cyc RNAi is esg-Gal4/+; UAS-dcr2/UAS-cyc RNAi) or in ECs (myo1A > cyc RNAi ismyo1A-Gal4/+; UAS-dcr2/UAS-cyc

RNAi) disrupts circadian mitotic rhythms. Control data are from Figures 1F and 1G. All graphs show the average of two separate experiments (n = 10 guts/

genotype/time point, error bars ± SEM, *p < 0.05 at ZT0).

(G) Following Bleocin exposure, control (ry506) intestinal mitoses peak at ZT0, in contrast to per01 and cyc0, similarly to what happens following DSS damage.

(H and K) The survival rates of all circadian clock mutants as well as animals in which PER or CYC was knocked down by RNAi in either ISCs or ECs are reduced

compared with controls on Bleocin (black lines). Graphs show representative experiments (n = 3 vials, 15 flies per vial; genotypes as above).

See also Figures S1, S2, S3, and S5.
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Figure 3. Circadian Rhythms Synchronize Cell-Cycle Phases in ISCs

(A and B) Dissected intestines of flies were exposed to the thymidine analog EdU for 45min to detect S phase cells (red). Control (ry506) diploid cells in the intestine

show a peak of S phase at ZT6, but neither cyc0 nor per01 shows this rhythm (n = 5 guts/genotype/time point, error bars ± SEM, *p < 0.05 at ZT6).

(C) The intestines of the FUCCI cell-cycle reporter:mAGmarks cells in S/G2/M phases, and Dl+ ISCs are indicated with arrows. Analysis is carried out in ISCs (for

example, the control esg > Luc RNAi indicates esg-Gal4 / UAS-S/G2/M-Green; UAS-Luciferase RNAi / +).

(D) Quantification of Dl+ ISCs suggests that most esg > cyc RNAi ISCs are negative at all time points, whereas esg > per RNAi are positive (green).

See also Figures S2 and S3.
(Figures 3C and 3D). However, not all ISCs are in S/G2/M

phases, indicating that a significant reserve population of ISCs

exists at all times. Irrespective of time, nearly all cyc RNAi ISCs

are S/G2/M phase negative, whereas nearly all per RNAi

ISCs are positive. Because its loss causes ISCs to accumulate

in G1 (or G0), these results suggest that CYC promotes the G1

to S phase transition. Conversely, when PER is lost, movement

through G1 is unopposed, but ISCs accumulate after S phase

entry without entering mitosis (see Figure 1F). Thus, we propose

that the circadian clock regulates the G1 to S phase transition in

ISCs following damage.

The Clock Regulates the Transcription of Hundreds
of Genes in the Intestine
More than 10% of all mammalian genes are regulated in a circa-

dian fashion (Panda et al., 2002), and components of the clock

directly regulate transcription in a tissue-specific manner

(Abruzzi et al., 2011; Akhtar et al., 2002), suggesting that a
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tremendous variety of cell states are outcomes of circadian pro-

cesses. Since per RNA and protein oscillate in the midgut, and

per was identified in our screen, we performed genome-wide

expression analysis on ry506 control intestines and cyc0 mutants

over 24 hr following damage (Figure 4A; Tables S1, S2, and S3).

We reasoned that clock target genes would show 24 hr rhythms

and would be perturbed if CLK/CYC were disrupted. We found

that 433 genes were rhythmic in controls, like per, but arrhythmic

in cyc0, indicating that they are under clock regulation in this

tissue (Table S1). For instance, Connector of kinase to AP-1

(Cka), a scaffold protein required for signal transduction of the

JNK stress-response pathway (Chen et al., 2002), peaks at

ZT15 (Figure 4B). Direct CLK/CYC targets would be expected

to be strongly reduced in cyc0 mutants, yet only 21 of 433 genes

(including per and tim) fit this profile (Table S2); hence, most

rhythmic genes are likely to be indirectly regulated. Two hundred

rhythmic genes showed the opposite phase to that of per, sug-

gesting they are regulated by the transcription factors vrille or



Figure 4. The Clock Regulates the Expression of Diverse Transcripts

(A) All genomic transcripts were interrogated for rhythmic expression during regeneration. Heatmaps reveal 433 geneswith circadian rhythms in ry506 controls but

not in cyc0 mutants.

(B)Cka, Ipk2, andKmn1RNA expression (qPCR) in the intestine over 24 hr.Cka shows per-like rhythms, whereas Ipk2 exhibits antiphasic rhythms.Kmn1 displays

no circadian rhythmicity but is significantly downregulated in the cyc0 mutant. Graphs are reported as in Figure 1B.

(C) Fliesmaintained in LD conditions on regular media do not show amitotic peak at ZT0, in contrast to when the intestine is damaged. Under these conditions the

mitotic index is similar between ry506 controls and cyc0 or per01 mutants.

(D) In the absence of damage, the expression ofCka and Ipk2 (qPCR) is rhythmic, similar to what is observed during regeneration. Kmn1 (qPCR) also shows lower

expression both before and after damage.

(E) Amodel of how the clock synchronizes ISC division: CYC is important for the transition throughG1, and the clock also initiates systemic signals and local niche

signals originating from ECs. Together, these signals activate ISC divisions, most likely through nonautonomous mechanisms.

See also Figures S2, S3, and S5.
Pdp1, which are part of the clock and together generate antipha-

sic transcript rhythms that peak in the early day (Hardin, 2011;

Table S1). One of these, Ipk2, is an inositol phosphate kinase
and a positive regulator of Jak/STAT signaling (Müller et al.,

2005), a pathway that is critical during intestinal regeneration

(Figure 4B). Another one of these genes, bazooka, was recently
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reported to polarize ISCs (Goulas et al., 2012), suggesting that

the clock also regulates cell polarity. An additional 205 genes

showed low expression in cyc0 mutants but did not display

rhythms (Table S3). This includes Kmn1, which enables chromo-

some segregation during anaphase (Venkei et al., 2011), sug-

gesting that mitosis could be disrupted (Figure 4B). Overall, a

great diversity of intestinal transcripts are thus influenced by

the clock.

DISCUSSION

Circadian pathway mutants are viable and their cells readily pro-

liferate during development. Unlike other tissues (Abruzzi et al.,

2011; Borgs et al., 2009), cell-cycle regulators do not seem to

be clock targets in the intestine (Table S1). Although they are

readily detected, neither cyclins nor regulators such as Wee1

(Matsuo et al., 2003) exhibit circadian rhythms in this tissue. In

the absence of acute damage, clockmutant ISCs divide normally

(Figure 4C) and have no ISC-autonomous phenotypes (Fig-

ure S4). So it is quite surprising that PER and CYC are critical

for adult ISC division during regeneration.

The ISC-autonomous phenotypes that occur during regenera-

tion aremodest compared with those that arise when the clock is

disrupted systemically or in all ISCs/ECs by RNAi. This suggests

that the clock predominantly regulates nonautonomous func-

tions and may be involved in the synchronization of cell states

across this tissue during the damage response. Indeed, because

esg-Gal4 is expressed in both ISCs and their immediate progeny

(the EBs) for some time while they differentiate, it is possible that

the clock regulates EB-to-ISC signaling. Intriguingly, disruption

of the circadian clock in different cells leads to the accumulation

of ISCs in different cell states; for instance, the cyc0mutant stalls

during mitosis when CYC is absent systemically (Figure 2A),

whereas it stalls during G1 if CYC is depleted in all ISCs (Figures

3C and 3D). This G1 lag explains why cyc RNAi ISCs show

reduced mitoses compared with the cyc0 mutant; however,

given that themechanisms underlying these processes are unre-

solved, it is possible that these differences are due to genetic

background. At present, we thus conclude that rhythmic cell

proliferation normally occurs in the damaged intestine and that

this is dependent on the clock. We also note that forced expres-

sion of per or cyc in ISCs is able to partially restore rhythmic

divisions in their respective mutant backgrounds (Figures 1E

and 2A), whereas disruption of these genes in only ECs perturbs

ISC rhythmic division (Figures 1G and 2F). This highlights the

complexity of clock-regulated processes and suggests that

desynchrony between ISCs and their surrounding cells (Figures

S1G and S1H) can have different outcomes.

Circadian rhythms occur in many intertwined processes,

including metabolism (Sahar and Sassone-Corsi, 2009), post-

transcriptional regulation (Koike et al., 2012), and oxidation-

reduction cycles (O’Neill and Reddy, 2011). The rhythmic

expression of Cka, which brings together kinases and transcrip-

tion factors to transduce JNK signal (Chen et al., 2002), and Ipk2,

which may boost the activity of cytokines involved in regenera-

tion (Müller et al., 2005), suggests that the clock sensitizes the in-

testine to engage the regenerative response at specific times.

For instance, several of the genes that exhibit circadian rhythms
1002 Cell Reports 3, 996–1004, April 25, 2013 ª2013 The Authors
during regeneration also show these rhythms prior to damage

(Figure 4D). An emergent function of the clock could be to coor-

dinate stem cell states according to either local niche signals or

systemic signals, each of which would be under autonomous

circadian control (Figure 4E).

Although per mutation increases cancer incidence (Borgs

et al., 2009; Fu et al., 2002; Wood et al., 2008) and cancer cell

proliferation (Borgs et al., 2009; Janich et al., 2011), our work

suggests it is not simply a tumor suppressor. Recently, the circa-

dian clock was shown to influence mammalian blood and hair

stem cell biology (Janich et al., 2011; Méndez-Ferrer et al.,

2008). In particular, hair stem cells are strikingly heterogenous

in their circadian rhythm activity (Janich et al., 2011), for

unknown reasons. The coordination of proliferation, by synchro-

nizing internal with external rhythms, may thus represent

an important difference between normal stem cells and

neoplastic cells.

EXPERIMENTAL PROCEDURES

Animals were maintained at 25�C under LD conditions and damaged by being

fed 5%w/v DSS (MPBiomedicals) or 25 mg/mLBleocin (Calbiochem). The flies

were maintained under LD conditions as before, except for experiments in

which the light conditions were changed to complete darkness or complete

light. Female flies < 14 days of age were used in all experiments, with the

exception of the mosaic analysis. The following Drosophila lines were used:

OreR

ry506

y, w

cyc0, ry506

per01;; ry506

per01; tim0; ry506

per01;; cyc0, ry506

y, w; tim0

UAS-per16

UAS-cyc6

esg-Gal4

esg-Gal4, UAS-eGFP, tub-Gal80TS

myo1A-Gal4

tim-Gal4

hsFlp, FRT19A, tub-Gal80; act < y+ < Gal4, UAS-GFP / CyO

hsFlp; act > CD2 > Gal4, UAS-nlsGFP / Cyo

w; UAS-dcr2 (II)

w; UAS-dcr2 (III)

UAS-S/G2/M-Green / CyO

cyc RNAi (National Institute of Genetics #8727R-1, Mishima, Shizuoka,

Japan)

per RNAi (TRiP #JF01226, Harvard Medical School, Boston, USA).

Luc RNAi (TRiP #JF01355, Harvard Medical School, Boston, USA).

Full details regarding the procedures are provided in Extended Experimental

Procedures.
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