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THE CONCEPT OF LINEAR CASSETTES
AND MODULARITY IN SIGNAL
TRANSDUCTION

Cells communicate and respond to conditions in their local
environment through signaling, a process consisting of
a series of regulated steps that help propagate information
across the external plasma membrane to the cell interior,
and often to the nucleus, to regulate diverse cellular
processes such as growth, proliferation, differentiation and
apoptosis. The set of molecules recruited by a specific
signal defines what is commonly referred to as a signal
transduction pathway. Dissection of biological responses to
similar families of ligands in various cell types and
organisms revealed that these ligands regulate the activity
of similar sets of downstream genes, a finding that led to the
concept of ‘evolutionarily conserved signal transduction
cassettes’ or modules [1]. A characteristic feature of these
modules is the occurrence of a tight internal link between
their individual components, and few, but well-defined
connections to the rest of the system in which they operate.
The concept of modules gained further acceptance when it
became clear that these characteristic chains of events were

iterated in the same pattern in different cellular and
developmental situations. The extent of signaling modu-
larity was underscored by studies of signal transduction in
simple genetic model organisms, where signaling tends to
be simpler than in more complex mammals (see below) [2].
The methodologies used to recognize and characterize
these pathways relied mostly on the similarity in visible
mutant phenotypes or screens in sensitized genetic back-
grounds (see Box 5.1 for definition). The resounding
conclusion from these studies was that of elegant
simplicity: it is common for loss-of-function mutations (see
Box 5.1 for definition) in different genes that constitute
a specific pathway to result in identical phenotypes. For
example, in the context of JAK/STAT signaling, mutations
in the activating extracellular ligand (Unpaired/Upd), in the
effector tyrosine kinase (Hopscotch/JAK), or in the effector
transcription factor (STAT92E/Marelle) caused identical
loss-of-function phenotypes, a feature consistent with
linearity of the pathway [3] (Figure 5.1A). Furthermore,
gain-of-function phenotypes (see Box 5.1 for definition)
had strikingly opposite developmental phenotypes and
could usually be reverted completely by removing the
activity of a more downstream component of the pathway.

Handbook of Systems Biology Concepts and Insights. http://dx.doi.org/10.1016/B978-0-12-385944-0.00005-8 89
Copyright � 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-385944-0.00005-8
http://dx.doi.org/10.1016/B978-0-12-385944-0.00005-8
http://dx.doi.org/10.1016/B978-0-12-385944-0.00005-8
http://dx.doi.org/10.1016/B978-0-12-385944-0.00005-8


Such properties have been instrumental in working out the
epistatic (see Box 5.1 for definition) relationships between
genes and in ordering components of a given pathway into
linear, minimally branched cascades [4]. These pioneering
studies have helped to reduce complex biological and
developmental processes to a finite number of paradigms
and clarified the identity and relationship of key compo-
nents in evolutionary conserved pathways. Reflecting the
implied linearity and independence of these pathways from
each other, most are named after the activating ligand or
a central effector protein, for example the Wnt/Wingless,
Hedgehog (Hh), TGF-b, JAK/STAT, Toll, NFkB, Notch,
receptor tyrosine kinase/extracellular regulated kinase
(RTK/ERK), Akt/TOR, Jun Kinase (JNK), G protein-
coupled receptor (GPCR) and steroid hormone pathways
[5]. The analysis of signal transduction pathways in
mammalian cells has presented a more complicated view,
hinting at significant bridges or ‘cross-talks’ between

various signal transduction modules/pathways. Cross-talk
or interaction between pathways allows cells to respond in
a coordinate manner to the combined extracellular and
intracellular cues that they are exposed to in order to
produce the appropriate response. Cross-talk between
pathways accounts for many complex signaling behaviors,
including signal integration, the ability to generate a variety
of different responses to a signal, and/or to reuse proteins
between pathways. For example, the SMAD proteins,
which have been assigned to the TGF-b signaling cassette,
can be phosphorylated by MAPK, which functions in
a separate pathway in lower eukaryotes. Thus, rather than
following a simple path, a signal received by a mammalian
cell may be relayed through multiple channels. Similarly,
other proteins such as Ras, protein kinase C (PKC), and
protein kinase B (Akt) are also activated by multiple
extracellular ligands. However, much of this knowledge
has originated from studies in cell lines and in vitro

Box 5.1 Key Terms and Concepts
l Sensitized genetic background: A sensitized genetic back-

ground is a mutant state in which an allele of a gene leads to

a weak phenotype in the biological process under study (for

example eye development in Drosophila). Thus, a weak

allele for gene X may lead to fruit flies with abnormal/small

eyes, whereas a strong/null allele would produce flies with

no eyes. In the sensitized background carrying the weak

allele for gene X it is possible to screen for new mutants that

either enhance the phenotype (small eyes to no eyes) or

suppress the phenotype (small eyes to normal eyes). Such

sensitized genetic screens can lead to the identification of

genes that function in the same pathway or genes that act

redundantly in parallel pathways.

l Saturation screen: A saturation screen is a genetic screen

that is performed to discover all genes that are involved in

a particular biological process. One of the first satura-

tion screens was performed in Drosophila by Christiane

Nüsslein-Volhard and Eric Wieschaus (1980) to uncover

genes that were associated with embryonic lethality and

changes in cuticle morphology. In such genetic screens,

a mutagen such as a chemical or radiation is used to

generate mutations in the organism’s chromosomes. Indi-

viduals that exhibit the phenotype of interest are selected

and the mutant alleles are mapped and cloned to identify

every gene involved.

l Loss-of-function mutation: Changes in the DNA sequence

of a gene that leads to reduced or abolished function of the

gene product.
l Gain-of-function mutation: Changes in the DNA sequence

of a gene that confers a new and/or abnormal function to the

gene product.
l Epistasis analysis: Epistasis is the interaction between two or

more genes where the effect of one gene on a particular

phenotype is modified by other gene(s). The gene whose

phenotype is manifested is called epistatic, while the gene

whose phenotype is modified as the result of the epistatic

gene is called hypostatic.

l Synthetic lethality: Mutations in two genes are said to be

synthetically lethal when cells with either of the single

mutations are viable but cells with both mutations are

lethal. A synthetic lethal genetic screen, starts with a muta-

tion in gene X that does not kill the cell, but may confer

a weak phenotype (such as, slow growth). This genetic

background is then used to systematically test mutations in

other genes that may lead to lethality.

l SDS-PAGE (sodium dodecyl-polyacrylamide gel electro-

phoresis): SDS-PAGE is a technique that is widely used in

molecular biology and biochemistry to separate proteins as

a function of their length and charge by application of an

electric field.

l iTRAQ (isobaric tags for relative and absolute quantifica-

tion) and TMT (tandem mass tags): iTRAQ and TMT are

used to identify differentially phosphorylated proteins

between different samples. These amine-reactive molecules

enable multiplexing of up to 4e8 samples: the small

molecules, identical in structure and mass, differ in the

isotopic substitution of atoms comprising their backbone.

This altered distribution permits the unambiguous spectral

identification of unique reporter ions generated from frag-

mentation of each tag during MS. The fragmentation of each

tag during MS results in the release of a signature reporter

ion that differs in mass from the other tags; the signature ions

released from the six tag set differ successively by 1 Dalton

and their relative levels can be considered to reflect differ-

ences in peptide levels between samples. iTRAQ and TMT

enable the concurrent analysis of multiple samples, and the

assessment of the relative levels of phosphopeptides.
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FIGURE 5.1 Evolution of linear signal transduction pathways to highly organized signaling networks. A.Mutant developmental phenotypes from

classic genetics screens showed that mutations in the activating extracellular ligand (Unpaired/Upd), in the effector tyrosine kinase (Hopscotch/JAK), or in

the effector transcription factor (STAT92E/Marelle) caused identical loss-of-function phenotypes, a feature consistent with linearity of signal transduction

pathways. B. Systems-level, functional genomic, proteomic, and expression studies in the past few years have revealed that signaling is propagated within

large networks consisting of hundreds or thousands of proteins. C. Structureefunction analysis of signaling networks has led to the identification of

network motifs, recurrent patterns of interconnections, that form the building blocks of networks as well as universal features such as Network Hubs (red

circles) and between-ness nodes (blue circles) that are likely to be encoded by essential genes.

91Chapter | 5 Analyzing the Structure, Function and Information Flow in Signaling Networks



biochemical assays, and there is some question as to
whether the same rules apply in vivo, or whether organisms
have evolved tight controls to maintain modularity and
prevent promiscuous cross talk.

More recently, newer findings from in vivo genetic
studies have put the linear and simplistic model of
signaling pathways increasingly at odds even in lower or
simple metazoan model organisms. For example, during
dorsal closure of the Drosophila embryo, the JNK, small
GTPase and TGF-b pathways may act together or
sequentially [6]. In addition, components that initially
were thought to be unique to one pathway have now
become implicated in others. For example, GSK3b and
CK1a act as important regulators of both the Wingless and
Hedgehog pathways in Drosophila [7]. Further, the Hippo
pathway has recently been found to restrict Wingless/b-
catenin signaling by promoting interaction between
a canonical Hippo pathway target, the transcription factor
TAZ/Yorkie, and Dishevelled, a canonical cytoplasmic
component of the Wingless pathway [8]. In addition, the
serine/threonine kinase Fused (Fu), a component of the
canonical Hedgehog pathway, functions together with
the E3 ligase Smurf to regulate the ubiquitylation and
subsequent degradation of Thickveins (Tkv), a BMP
receptor, during Drosophila oogenesis [9]. Altogether, an
increasing number of examples escape the canonical view
of linear signaling cassettes but rather argue in favor of
more elaborate signaling mechanisms in which variations
in both content and molecular interactions are a general
feature of and between signaling pathways. In summary,
our knowledge of the organization of signaling pathways
is still rudimentary despite our extensive understanding of
some of the players involved in signal transduction.
Recognizing the flexible and interconnected nature of
signaling cascades will promote a more systematic study
of complex cellular signaling, which in turn may greatly
improve our understanding of the origin of signaling
versatility in development and pathology.

GENETIC DISSECTION OF SIGNAL
TRANSDUCTION PATHWAYS

In 1958, G. Beadle and E. Tatum received the Nobel Prize
in Physiology and Medicine for demonstrating that ‘body
substances are synthesized in the individual cell step-by-
step in long chains of chemical reactions, and that genes
control these processes by regulating definite steps in the
synthesis chain (http: //www.nobel.se). Since the realiza-
tion half a century ago that genes encode the building
blocks that make up cells, identifying their functions has
become a priority in the life sciences.

Historically, identifying gene function has relied on
genetic approaches whereby the function(s) of a given gene
is inferred from the phenotype(s) associated with a mutation

in that gene. The systematic application of genetics has led
to a wealth of knowledge in processes such as pattern
formation during development, and signal transduction. For
example, saturation screens (see Box 5.1 for definition) have
led to a global understanding of pattern formation in the
earlyDrosophila embryo, and to the identification of the key
genes involved in the process [10]. A major result of these
seminal studies was that genes exhibiting the same or
similar morphological mutant phenotypes were often found
to be part of the same signaling pathway.

An important consideration to keep in mind when
taking a genetic approach to deduce gene function is that
one studies the global response of the organism to a genetic
perturbation. Thus, the endpoint phenotype may be telling
us more about the way an organism responds to a genetic
perturbation rather than about the wild-type function of the
gene itself. A telling example is found in the context of
Wingless (Wg/Wnt) signal transduction in Drosophila.
There, the seven transmembrane protein DFz2 (Drosophila
frizzled 2), which encodes the Wg receptor, regulates
the activities of the Dishevelled (Dsh), Glycogen Syn-
thase Kinase 3 (GSK3) and b-catenin proteins [11]. In the
absence of DFz2, a related receptor encoded by Frizzled
(Fz) can substitute for DFz2, suggesting that these two
related receptors can act redundantly. However, in the
presence of DFz2, Fz does not appear to regulate the
activity of the Dsh/GSK3/b-catenin pathway, but instead is
involved in the regulation of the Planar Cell Polarity (PCP)
pathway. Although Fz does not transmit the Wg signal in
the wild-type context, the structure of the signaling network
allows the activity of Fz to be hijacked to compensate for
the absence of DFz2. In this case, the analysis of mutations
in DFz2 failed to reveal the bona fide physiological func-
tion of DFz2 in Wingless signaling.

This simple example illustrates a critical but often
overlooked concept: when interpreting the results of
a genetic approach, there is the danger that our conclusions
about the purported wild-type function of a single gene
product might be obscured by our existing (but incomplete)
knowledge of the signaling network of which it is
a component. This is analogous to Plato’s powerful Alle-
gory of the Cave, which argues that our interpretation of the
world around us is limited by observations made from our
vantage point and current knowledge. Thus, in theory, the
best way to fully evaluate the function of a single gene
product would be to first have a global understanding of the
cellular network in which they operate, then remove that
component from the network and conclude about the
function of that gene based on ‘network knowledge’.

Access to the full repertoire of genes encoded by
different genomes has made it possible to design new
systems-level approaches based on the principles of ‘reverse
genetics’ to construct such global cellular networks.
Reverse genetics is an approach to discover the function of
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a gene by analyzing the effect of specific gene sequences on
a phenotype, in contrast to forward genetics, which seeks to
find the genetic basis of a particular phenotype. The avail-
ability of full genome sequences for all of the well-studied
model organisms has given rise to the field of functional
genomics, which attempts to describe gene sequences in
terms of function (by perturbing the gene using, for
example, RNA interference (RNAi) and examining the
array of phenotypes associated with the perturbation),
expression (by expression profiling using genome-wide
microarrays) and proteineprotein interactions (by proteo-
mics studies, for example mass spectrometry (MS)). Func-
tional genomic studies are generally carried out on
a genome-wide scale using high-throughput methods rather
than the more traditional ‘gene-by-gene’ approach, and can
be implemented in both whole organisms and cell lines.

Importantly, functional genomic studies to analyze
genotypeephenotype relationships using emerging tech-
nologies such as RNAi are based on quantitative (for
example relative luminescence units from a luciferase
reporter) rather than qualitative readouts (cuticle defects) to
reflect effect on phenotype. The use of quantitative pathway
reporters has led to the identification of hundreds of
pathway components, each of which contributes to the
measured phenotype, albeit in varying amounts. This can
be best understood by ranking each gene by its effect (when
knocked down by RNAi) on the quantitative phenotype
being measured. In most cases this generates a continuous
distribution from the strongest positive regulators to the
strongest negative regulators [12]. In addition, large-scale
interaction studies have shown that many proteins are
involved in many interactions, both physical associations
with other proteins, metabolites and nucleic acids as well as
post-translational modifications, to regulate cellular and
organismal functions. Thus, over the past decade or so,
systems-level, functional, expression and proteomic studies
have revealed that signaling is propagated within large
networks consisting of hundreds or thousands of proteins
(Figure 5.1B). This view is in direct contrast to the tradi-
tional reductive approaches discussed above, which focus
on individual proteins and which had led to the consensus
that signaling takes place largely within simple linear
cascades. Furthermore, such analyses have led to the
generation of network maps to represent cells as complex
interconnected ‘systems’ rather than mere collections of
individual molecules. In network representations of cells,
‘nodes’ represent proteins/metabolites/nucleic acids as
‘parts’ of the system [13]. The ‘edges’ represent relation-
ships between the nodes. The generation of such network
maps in the last decade has facilitated the identification of
characteristic structural features or topologies inherent in
most complex networks and has led to the realization that
the structural organization of networks is key to their
function. Topological analyses (Figure 5.1C) of different

large-scale biological networks (metabolic networks [14],
proteineprotein interaction networks [15], and transcrip-
tional regulatory networks [16]) have found that complex
networks have a small-world property (that is, most nodes
in the network can be reached from any other node by
a small number of steps) [17] and are scale-free (that is,
most nodes in the network have very few connections,
whereas a few nodes have many connections) [18]. In at
least three different eukaryotes e yeast, worm and fly [15,
19e21] e network hubs (nodes with a high degree of
connectivity) are often encoded by essential genes. These
shared network properties have been proposed to confer
functional advantages such as robustness to fluctuations in
the environment, tolerance to random mutations [22], and
efficient information processing and flow [23]. Thus, the
small-world and scale-free nature of biological networks is
under positive evolutionary selection [24]. Another char-
acteristic feature of biological networks are small, recur-
ring patterns of interconnections called network motifs that
are significantly more enriched in biological networks than
in random networks [25,26]. These motifs form the basic
building blocks of networks and are directly responsible for
the dynamic information processing functions of biological
systems (Figure 5.1C). For example, negative feedback
loops increase the speed of response to incoming signals
and help to reduce variations in protein levels across cells.
On the other hand, positive feedback loops slow down the
response time and can lead to a bi-stable (ON or OFF)
switch-like behavior [27e30]. Another topological feature
that has recently come into the limelight is the ‘between-
ness centrality’ of nodes in a network [31,32]. Between-
ness centrality measures the number of non-redundant
shortest paths going through a given node [33,34]. Nodes
with high between-ness are considered to represent
bottlenecks within networks and are analogous to major
intersections in a transportation network. Blockage of such
intersections would cause a major traffic jam, leading to
failure of the transportation system (Figure 5.1C), and so
bottlenecks in signaling networks represent attractive
targets for therapeutic intervention in the case of deregu-
lated signaling. It has been shown that network bottlenecks
are not necessarily hubs, but, like hubs, are more likely to
be encoded by essential genes [19,35].

It is clear that to fully understand cellular responses to
signaling will require approaches that go beyond the more
classic genetic and biochemical studies. Indeed ‘systems
biology’ approaches based on high-throughput, large-scale
methods are needed to understand cellular responses to
signals in toto. At the most basic level, a complete picture
of signal transduction first requires a comprehensive ‘parts
list’ of the components that participate in the cellular
signaling network. The second step is to comprehensively
identify the physical and functional relationships between
the nodes and infer how information flows through the
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network. Importantly, since the same network is deployed
to achieve distinct cellular functions in a context-dependent
manner, it is essential to extend the systems biology
approaches to construct network models that incorporate
information regarding the dynamics of molecular interac-
tions within cells. Inferring the flow of information through
a network provides directionality to the edges between the
nodes of the network. This can be achieved by systemati-
cally perturbing nodes, either by gene knockouts or by
RNAi knockdown, followed by measurements of a wide
variety of quantitative phenotypes. The phenotypes
measured can include changes in gene expression, post-
translational modifications such as phosphorylation and
acetylation of key proteins, and/or in cellular morphology
or behavior. Quantitative phenotypic signatures provide
insight into the information processing function of
signaling networks, which is key to achieving a mecha-
nistic understanding of how various cellular processes are
regulated in time and space.

SYSTEMS APPROACHES TO IDENTIFY
THE ‘PARTS’ OF CELLULAR SIGNALING
NETWORKS

RNA Interference (RNAi)

In recent years, as full genome sequences have become
available for Drosophila [36], human [37,38] and other
organisms, large-scale analyses of gene functions have given
rise to the field of ‘functional genomics’. RNAi has emerged
as a unique and powerful functional genomics tool to effec-
tively suppress gene expression inmany animal systems [39].
In contrast to other genomic-based approaches, RNAi
provides a direct link fromgene to function. The development
of genome-scale RNAi libraries that contain clones for most
genes in a genome in multiple organisms from Caeno-
rhabditis elegans,Drosophila, mouse and human cells, to the
flatworm Planaria [40,41] and Arabidopsis [42], permits the
rapid identification of all genes involved in a particular
process [43e49]. Because RNAi is applicable to high-
throughput genome-wide analyses it provides a tool to extract
functional information globally and comprehensively.

The phenomenon of RNAi was first identified in plants
and worms [50]. In C. elegans, the process of target gene
suppression by RNAi can be triggered by injecting long
dsRNAs (~500 nucleotides) into worms, by feeding them
bacteria that express the dsRNA or by simply soaking them
in solution containing the dsRNAs [51e53]. In Drosophila,
dsRNAs can be delivered into embryos via injection or by
generating transgenic animals that carry RNAi hairpin
constructs for in vivo screens [54]. Importantly, the addition
of long dsRNAs to Drosophila tissue culture cells (dsRNA
bathing) can efficiently reduce the expression of target
genes [55,56]. Using RNAi in cell lines has led to an

explosion of genome-wide cell-based RNAi data for
diverse biological processes, including signal transduction,
hostepathogen interactions and oncogenesis [47].

When dsRNAs are introduced into cells, they are
recognized and degraded by the conserved RNAse III
family of nucleases known as Dicer [52,56e60]. Dicer
enzymes process the dsRNA into 21e23 nucleotide (nt)
short-interfering RNAs (siRNAs) that are incorporated into
a multi-protein RNA-induced silencing complex (RISC).
This complex directs the unwinding of the siRNAs con-
tained within RISC, and guides RISC to the corresponding
mRNA to eventually degrade the targeted transcript.
Different types of RNAi reagent have been developed to
knockdown target genes in different types of cells and
organisms. The four most commonly used RNAi reagents
include long dsRNAs (~500 nt), siRNAs (21e23 nt), short-
hairpin RNAs (shRNAs; 70 nt) that can be produced
exogenously or carried on an expression vector, and
endoribonuclease-prepared siRNA (esiRNAs) [61e63].
Typically, RNAi reagents are delivered into cells by virus-
mediated transduction for shRNAs, or by lipid-mediated
transfection or electroporation for shRNAs, siRNAs,
esiRNAs, and dsRNAs [44,46,64,65]. In the case of many
Drosophila tissue culture cells, dsRNAs are directly taken
up from the surrounding medium without the need for
transfection [55,56].

The success of RNAi screening depends on the robust-
ness of the cell-based assay, especially its suitability to high-
throughput screening (HTS). Almost all HTS cell-based
assays provide a quantitative readout for the biological
process under study. Many assays use transcriptional
reporters where a well-characterized transcriptional regula-
tory element that is known to respond to the signaling
pathway under study is linked to a reporter such as lucif-
erase, green fluorescence protein (GFP) or the E. coli
b-galactosidase (LacZ). The overall output of the reporter
can be rapidly measured using a standard plate reader
[66e70]. Candidate RNAi hits are identified by their ability
to affect the basal or induced expression of the reporter
driven by the pathway responsive promoter. Transcriptional
reporter-based assays have been used to identify regulators
of individual transcription factors such as NFkB [71], E2F
[72], and FoxO [73]. In addition, several transcriptional
reporter-based RNAi screens have been conducted to iden-
tify the regulatory network surrounding cellular signaling
pathways, including the Wnt pathway [69,74e76], the Hh
pathway [7,70] and the JAK-STAT pathway [66,77]. Further
screens based on Oct4 expression level or Oct4 driven GFP
expression level have been used to identify regulators of
stem cell identity [78,79]. Transcriptional reporter-based
assays have several advantages, including easy adaptability
to HTS, rapid and automated data collection, and the ability
to identify both positive and negative regulators of the
process under study. However, transcriptional reporter-based
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assays also suffer from a number of limitations that must be
taken into careful consideration when interpreting the results
from a given screen. For instance, the use of a single
pathway-responsive promoterereporter construct assumes
that all signaling through the pathway converges on the
single readout being assayed, and as a result components that
do not converge on this readout will be missed. Furthermore,
synthetic promoter constructs that are composed of a string
of binding sites for a single downstream transcription factor
do not reflect the endogenous context, as they lack sites for
co-regulators or sequences that may be important for
epigenetic regulation. These limitations contribute to the
false negative rate (the number of true regulators missed)
associated with the screen. Although it is not possible to
completely eliminate false negatives in a genome-wide
screen, one can estimate the false negative rate from
benchmarking the data obtained with known pathway
regulators. Perhaps a more serious problem is experimental
variations due to non-specific factors affecting assay
readout, leading to the accumulation of false positive hits in
the screen. These include factors that affect the level of the
reporter indirectly by having an effect on cell viability/
proliferation, global transcription, protein translation and
stability. Experimental variations are also introduced owing
to differences in transfection efficiency in the case of screens
where the reporter and/or RNAi reagents are transiently
transfected into cells. Thus, appropriate normalization
methods are required to account for false positives due to
such non-specific factors. A commonly used normalization
procedure is co-transfection of a control reporter (for
example Renilla Luciferase) along with the experimental
reporter (for example Firefly Luciferase). A good control
reporter for assay normalization should include a constitu-
tively active promoter that is inert to the pathway under
study and achieves reporter expression significantly higher
than background [80].

Transcriptional reporter assays have also been em-
ployed to identify transcription factor/signaling pathway
regulators in a number of in vivo RNAi screens (i.e., in
whole organisms rather than tissue culture cells). For
instance, large collections of transgenic RNAi lines have
been generated to conduct spatially and temporally defined
in vivo screens in Drosophila [81,82]. Such resources can
be used to systematically screen gene functions in specific
tissues for phenotypes or effects on gene expression. For
example, a LacZ reporter for Suppressor of Hairless
(Su(H)) expression in the wing imaginal disc has been used
as a readout in a screen for Notch pathway regulators [83].
In another case, serine proteases that are involved in the
activation of the Toll pathway upon infection have been
identified using a drosomycin-LacZ reporter assay [80].

Another quantitative cell-based assay makes use of
specific antibodies that recognize protein modifications
such as phosphoserine/tyrosine or methyl-lysine residues

on key components of the signaling pathway itself or on
proteins that form a part of the cell’s response to activity
through the pathway. For instance, genome-wide screens
using phospho-specific antibodies have identified regula-
tors of dually phosphorylated MAP kinase/ERK and
phosphorylated Akt downstream of receptor tyrosine kinase
(RTK) signaling [84e86]. The success of antibody-based
assays is critically dependent on the availability of specific
antibodies. Such assays can be performed using a simple
plate reader to measure fluorescence emitted by the fluo-
rescently coupled secondary antibody. Antibody selection
and validation are critical for the development of any high-
quality assay. The specificity of the antibody should be
precisely evaluated by both Western blotting and immu-
nocytochemistry (cell staining). An antibody that generates
strong non-specific bands in a Western blot is not suitable
for plate-based assays. Importantly, it must be determined
beforehand that the antibody truly detects pathway activity
in response to known stimuli and perturbations. A major
difference between Western blots and plate-based assays is
the context in which proteins are analyzed. In plate-based
assays cultured cells are fixed to the bottom of a microplate,
and therefore the immobilized antigens present a slightly
different conformation than those that have been processed
by SDS-PAGE (see Box 5.1 for definition) prior to Western
blotting. Thus, it should be noted that although some
primary antibodies perform well for Western blotting, they
might exhibit poor binding characteristics on fixed anti-
gens, resulting in low fluorescence signal in the plate-based
format. As in the case for transcriptional reporter-based
assays, the signal from the phospho-specific antibody must
be normalized to account for variations in cell number
across different wells in the plate. A wide array of fluo-
rescent molecules, including DNA-binding dyes (DAPI,
TO-PRO 3), actin-binding dyes (Phalloidin), antibodies to
total protein and non-specific cytoplasmic protein stains,
can be used for normalization. However, it must be first
determined that the stain of choice does indeed provide
a linear measure of cell number. These plate-based
approaches provide an attractive alternative to high-
throughput microscopy (also known as high-content
screening, HCS) for assay readouts that are based on
immunofluorescence detection. If high-resolution infor-
mation is not central to the results of the screen, then plate
reader assays [84e86] provide a significant advantage in
terms of ease and speed of detection, as well as simplifying
the downstream analysis to a single intensity measurement
per well to report effect on pathway activity.

An alternative to the plate-based assays described above
is the transfected cell microarrays that allow the miniaturi-
zation and simplification of high-throughput assays [87].
RNAi reagents are spotted on the surface of a standard
glass microarray slide and are used to transfect cells. This
generates a living cell microarray comprising locally
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transfected cells in a mixture of non-transfected cells
[87,88]. Transfected cell microarrays facilitate large screens
with many replicates, as they offer the advantage of using
minimal amounts of antibody compared to traditional plate-
screening formats. For example, Lindquist et al. performed
a genome-scale RNAi screen on microarrays of Drosophila
cells to identify novel regulators of mTOR (mammalian
Target of Rapamycin) complex 1 (TORC1) signaling by
immunofluorescence [89]. A total of 70 novel genes were
identified as significant regulators of RPS6, a TORC1
effector. Cell microarrays facilitate large screens with many
replicates, as they offer the advantage of using minimal
amounts of antibody compared to the traditional plate-
screening format. The amount of immunofluorescence from
the phospho-specific antibody can be normalized to cyto-
plasmic area using standard image analysis software pack-
ages such as those developed for HCS image analysis [90].

Although plate reader assays have the advantage of
speed and ease of performance, HCS is undeniably one of
the most powerful HTS assays because it allows multiple
cellular features/parameters, such as protein abundance as
well as localization, to be measured simultaneously. Image-
based screens typically use either fluorescently conjugated
primary or secondary antibodies to visualize proteins or
cellular structures of interest (for example anti-Fibrillarin
antibody to visualize the nucleolus) or fluorescently labeled
dyes and GFPs tagged with the appropriate localization
signal (for example nuclei, mitochondria, Golgi, and actin
filaments). HCS has been performed to identify targets of
small molecules/drugs [91e95] and also in a number of
RNAi screens to identify genes that affect diverse cellular
functions, including cell morphology [96e98], cell cycle
progression [99], mitosis [100,101], endocytosis [102, 103]
and hostepathogen interactions [104e107]. Quantitative
image analysis has also been used to identify genes
required for growth and morphology of fluorescently
labelled primary neurons/glia and muscle cells in response
to RNAi-mediated gene knockdown [108,109]. Although
multi-parametric, quantitative image analysis applied to
large-scale functional genomic screens promises to
generate systems-wide insights into many fundamental
cellular processes, automated image acquisition and anal-
ysis, feature extraction, and data storage can be challenging
and are still undergoing rapid development [110,111].
Other cell-based assays include the use of flow cytometry to
measure response to RNAi treatments [112e114].

RNAi HTS in various cell lines using the different cell-
based assays discussed above, have been conducted for
a diverse array of biological processes, including cell
viability [68], cell morphology [96,98], cell cycle [112],
cytokinesis [91], susceptibility to DNA-damaging agents
[115,116], RNA processing [117,118], general and
specialized secretion [67], calcium stores [119e121],
factors influencing polyQ aggregation and toxicity [122],

mitochondrial dynamics [123], circadian clock [124],
hypoxia [125], phagocytosis [113,126], innate immunity
[127e129], cell susceptibility to infection by viruses or
other intracellular pathogens [104e107] as well as most of
the major signaling pathways [7,47,66,69,70,75,77,85,86,
130,131]. Results from these screens have not only identi-
fied new components of the process under consideration but
have also provided insights into the complexity of signaling
networks. RNAi screens in mammalian cells [47] have led
to the identification of novel oncogenes and putative drug
targets for the development of therapeutics [64,132e136].

Although HTS based on RNAi has transformed the field
of systems biology in the identification of gene functions, it
is important to keep in mind that inhibition of gene
expression by RNAi is not the same as gene inactivation by
mutation. RNAi acts at the level of the messenger RNA
(mRNA), either by reducing mRNA levels or by blocking
mRNA translation [137e139]. Thus, RNAi-based assays
can suffer from high rates of false negatives due to incom-
plete knockdown of mRNA levels (or knockdown of only
specific splice forms). Another significant issue associated
with RNAi reagents is that they can lack specificity due to
suppression of unintended genes, leading to false positives.
False positives due to sequence-dependent off-target effects
(OTEs) have been shown for RNAi reagents with � 19 nt
regions of homology with unintended targets [140]. It has
also been demonstrated that sequence-dependent OTEs are
particularly problematic when the RNAi reagents target gene
regions containing CAN repeats (where N can be any
nucleotide) [75] that are found in many fly genes. In addi-
tion, siRNAs can also interfere with mRNA stability and/or
translation through the microRNA pathway [137e139].
MicroRNAs (miRNAs) are non-coding RNAs that are
encoded by the organism’s genome and help regulate gene
expression. Mature miRNAs are 22 nt RNAs and are similar
in structure to siRNAs that are produced from exogenously
introduced long dsRNAs. miRNAs bind to complementary
sites that are 7e8 nt long within 30UTRs (untranslated
region) of target genes, leading to cleavage or translational
repression [141]. The siRNA and microRNA pathways
converge downstream of initial processing steps and share
some of the same silencing machinery [118]. The 50 region
of the siRNA can act like the seed region of a microRNA,
which extends from position 2 to position 8 of the guide
strand and is complementary to sequences in the 30
untranslated region (30UTR) of target genes. Since a perfect
match of only 7e8 nt is required between the seed region
and the target mRNA for repression, it is difficult to identify
all of the many putative targets in a cell [142,143]. Thus,
sequence-dependent OTEs of siRNAs seem to result at least
in part via microRNA-like off-target activity, which may
result from siRNAs entering the microRNA pathway and
functioning as microRNAs on targets with matches to the
seed region in their 30UTRs.
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Although the prevalence of OTEs was underestimated
in early RNAi screens, a number of approaches have now
been developed to minimize their effects [47,144]. These
include the development of computational tools to design
RNAi reagents with limited or no homology to genes other
than the intended target; the use of multiple independent
RNAi reagents targeting the same gene; and the rescue of
the RNAi-induced phenotype by an RNAi-resistant version
of the gene. Further, with the availability of the catalogue of
expressed genes in a wide array of commonly used cell
lines by RNA sequencing [145], false positives associated
with a screen performed in Drosophila cells can be iden-
tified and filtered based on whether the targeted gene is
expressed in the cell line being screened. One can also filter
out potential false positives by removing genes that score in
a large majority of RNAi screens.

Large-scale epistasis or synthetic lethality studies (see
Box 5.1 for definition) using sensitized genetic backgrounds
can also uncover new components of signaling pathways
[146] because they tend to reveal genes that are involved in
redundant or parallel pathways/complexes. Such screens are
similar in concept to the synthetic genetic array (SGA)
analysis in yeast, where the viability of a set of gene dele-
tions has been tested in backgrounds where other genes have
been similarly deleted (synthetic lethal) or overexpressed
[147e149]. The results from these studies showed that
RNAi of many individual genes does not affect growth, but
that many genes do have a synthetic genetic growth
phenotype in combination with other genes. These genetic
interactions include both negative (aggravating) interactions
as well as positive (alleviating) ones, where the phenotype
of eliminating one gene is attenuated by the loss of a second
one. Combinatorial RNAi experiments where dsRNAs are
screened for their ability to suppress or enhance the effect
caused by another dsRNA (or by small molecules) are also
becoming increasingly common [150,151]. Examples of
HTS for multiple genes by RNAi include 17 724 combi-
nations that identified regulators of Drosophila JNK
signaling [150], and combinatorial RNAi of disease relevant
genes in C. elegans, which identified ~1750 novel functions
for genes in signaling [152]. RNAi microarrays facilitate the
miniaturization of combinatorial RNAi screens and provide
an effective and economical way to conduct large-scale
screens in tissue culture cells [89,153,154].

In addition to identifying new genes involved in
a particular biological process, comprehensive and quan-
titative genetic interaction data can be used to shed light on
the organizing principles of signaling networks and
the ways in which distinct signaling modules are inter-
connected. Schuldiner and colleagues [155] developed
a strategy for building large-scale genetic interaction maps
called ‘epistatic miniarray profiles’ (E-MAPs) that allows
one to group sets of genes based on their signature/patterns
of genetic interactions. Using this strategy, an E-MAP of

genes involved in the early secretory pathway (ESP) in the
budding yeast was constructed which robustly identified
known pathways and relationships, such as the effect of the
unfolded protein response (UPR) pathway on secretory
functions, and the hierarchical relationships of the different
stages of vesicular trafficking. This study also identified
a strong link between endoplasmic reticulum-associated
degradation (ERAD) pathway and lipid biosynthesis,
a connection that had been previously poorly characterized.
The E-MAPs strategy has been successfully extended to
study the networks of genes involved in creating, main-
taining and remodeling the chromatin in response to
various cues [156], and also to identify novel components
of the RNAi machinery in the fission yeast Schizo-
saccharomyces pombe [157]. The success of these studies
highlights the power of E-MAPs to provide a systems-level
view of the functional topology of networks that cannot be
obtained by other methods. Recently, the concept of E-
MAPs has been successfully implemented in Drosophila
cells using combinatorial RNAi screens [158]. In this study,
pairwise interactions between 93 genes involved in
signaling were evaluated using two independent RNAi
reagents for each per target. This set of 93 genes included
components of the three MAPK pathways (Ras-MAPK,
JNK and p38 pathway) and all expressed protein and lipid
phosphatases. The pairwise knockdowns were analyzed for
their effects on cell number, mean nuclear area and nuclear
fluorescence intensity and resulted in 73 728 measure-
ments, from which interaction scores were estimated. The
success of the strategy was reflected in the high frequency
of interactions observed between known components of the
Ras-MAPK signaling pathway and a clear separation from
regulators of the JNK signaling pathway. In addition, the
authors identified connector of kinase to AP-1 (Cka),
a scaffold protein in the JNK signaling pathway [159], as a
positive regulator of Ras-MAPK signaling, and thus
a putative point of cross-talk between the two pathways was
identified.

Functional genomic approaches at the level of whole
systems are powerful because they can identify most genes
that affect a given signaling network, and have revealed
that, contrary to previous views, hundreds of genes may be
a part of a signaling network. However, genetic studies do
not distinguish between direct and indirect effects, and
therefore it is not clear where in the network the different
genes identified act. Understanding how they contribute to
the overall structure of the cellular signaling network
requires the integration of genetic data with other datasets
such as proteineprotein interaction networks.

ProteineProtein Interactions

Large-scale proteineprotein interaction (PPI) mapping
complements genetic studies by revealing physical
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associations and helps to define the physical signaling
network. In PPI networks, nodes represent proteins and the
edges represent a physical association between them. The
methods most widely used to map PPI networks include the
yeast two-hybrid (Y2H) systemand its derivatives [160, 161],
and affinity- or immunoprecipitation followed by mass
spectrometry (AP/MS) [162e165]. PPI networks derived
from Y2H methods are composed of binary (direct) interac-
tions, whereas those derived from AP/MS techniques can be
both direct and indirect, as they identify protein complexes.

Large-scale Y2H studies have been conducted with
proteins from Helicobacter pylori [166], yeast [167e169],
C. elegans [21,170,171], Drosophila [172e174], and
human [175e179]. Strikingly, the three large-scale
Drosophila Y2H mapping studies failed to fully recapitu-
late known signaling pathways. For example, querying the
combination of these studies for Raf reveals only interac-
tions with CG15422, Ras, Rhomboid, and Rap2L (http:
//itchy.med.wayne.edu/PIM2/PIMtool.html), neglecting to
identify most known targets, scaffolds, and co-regulators of
Raf activity. Thus, these ‘proteome-scale’ approaches,
although they identified highly abundant or strongly inter-
acting cellular components, failed to identify many inter-
actors of signaling components e most likely because of
the absence of endogenous signaling contexts [180]. For
this reason, MS-based approaches have become more
popular, especially as the difficulty of implementation and
costs have dropped dramatically.

Comprehensive MS-based PPI mapping has been
applied in yeast [181e185]. A global protein kinase and
phosphatase interaction network identified 1844 interac-
tions between 887 proteins [181]. The success of MS
approaches has been aided by the increased sensitivity of
MS technology and implementation of tandem affinity
purification (TAP) of protein complexes [186]. Recently,
tandem affinity purification followed by MS has been used
to isolate protein complexes from Drosophila tissue culture
cells and tissues (http: //flybase.org/). ~5000 Drosophila
proteins were fused to a FLAG-HA tag so that the fusion
proteins could be expressed and recovered with their
interacting partners from cells, or from whole transgenic
flies. In addition to proteome-scale AP/MS, a number of
smaller studies have been conducted in human cells on
signaling pathways such as TNF-a and Wnt [187,188],
biological processes such as autophagy [189], protein
families such as the de-ubiquitinating enzymes [190], and
protein complexes such as the RNAepolymerase II and
PP2A complexes [191,192].

Both Y2H and AP/MS PPI mapping methods have
been applied to the characterization of cellular networks
with disease relevance, such as virusehost interactions
[193e197]. These proteomic studies have confirmed that
cellular processes take place within large networks of
interconnected proteins.

PPI approaches, as implemented thus far, have been
incomplete for investigations of signal transduction
because they (1) do not provide functional information,
and (2) often take place outside the context of endogenous
signaling. These issues can be addressed by combining
proteomics with RNAi. For instance, Y2H was used to
identify interactors of the DAF-7/TGF-b pathway in
C. elegans, resulting in a network of 59 proteins, and
RNAi was used to show that nine novel interactors func-
tionally interact with the TGF-b pathway [198]. Another
major study used a pathway-specific approach with liquid
chromatography/tandem MS to characterize the inter-
actors of 32 TNF-a/NFkB pathway components in
mammalian cells under endogenous signaling conditions
[187]. Interactors were identified at baseline and under
TNF-a stimulus, revealing 221 interactions. RNAi was
then used to determine their influence on signaling output.
This study demonstrated the power of pathway-directed
proteomics in endogenous signaling contexts. One limi-
tation of this study, however, was the lack of rigorous
quantitation of the assembly of signaling complexes. Most
signaling complexes are highly dynamic, with compo-
nents often held in inactive complexes that can change
dramatically following stimulation. For example, Raf and
KSR are held in separate inactive complexes bound to
PP2A core components and 14-3-3 proteins; following
stimulation, Ras induces the recruitment of PP2A regu-
latory subunits to Raf, dephosphorylation of 14-3-3
binding sites, release of 14-3-3 proteins, membrane
recruitment, KSR and Raf co-localization, Raf phos-
phorylation of MEK, and MEK phosphorylation of MAPK
[199,200].

RNAi and MS can also be combined by first starting
with RNAi and then following up with MS, as has been
demonstrated for RTK/ERK signaling at baseline and
under insulin stimulation [84,85]. All of the major known
components of the pathway were tagged. In addition,
a control cell line was engineered to subtract common
interactors/contaminants. Altogether, 54 339 peptides
were identified representing 12 208 proteins, encompass-
ing an unfiltered network of 5009 interactions among 1188
individual proteins. To provide a ranked list of novel
pathway interactors, filtering out sticky proteins found in
control preparations and providing a probability that the
observed interactor is real, the significance analysis of
interactome (SAINT) method was applied to the PPI
dataset [181]. Using a SAINT cut-off of 0.83 and a false
discovery rate (FDR) of 10%, a filtered PPI network of
386 interactions among 249 proteins surrounding the
canonical components of the RTK/Ras/ERK signaling
pathway was generated [84]. In this network canonical
baits have multiple common interactors, as would be
expected from a well-connected signaling pathway (as
opposed to unbiased PPI mapping of random protein
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baits), as well as many unique interactors. Because the
baits were purified under two conditions, baseline and
insulin stimulation, the dynamics of the mini-proteome
during signaling events was uncovered. As a measure of
the sensitivity of the TAP/MS approach to network char-
acterization, interactions among the canonical compo-
nents and their known interactors were extracted. This
canonical network recapitulated most of the known RTK-
ERK signaling pathway.

Comparing the RTK-ERK PPI network to six unbiased
genome-wide RNAi screens revealed that nearly half (119)
of the proteins identified by PPI mapping scored in the
RNAi screens, which is a significant enrichment relative to
the entire genome (19%, p < 7 � 10e25) [187].

A major bottleneck in large-scale proteomics studies is
the experimental validation of specific interactors or
components of complexes. The combination of AP-MS
with RNAi-mediated knockdown provides a way to
directly validate specific PPIs. With differential labeling of
the two proteomes to be compared (wild-type vs. RNAi
knockdown) such analyses have the potential for accurate,
highly quantitative results [201,202]. Currently, two major
types of labeling technique are used for MS-based pro-
teomics studies: metabolic labeling and chemical labeling
[203]. Stable isotope labeling by amino acids in cell
culture (SILAC) is considered to be the gold standard in
the case of metabolic labeling. Here, isotopically labeled
amino acids (for example arginine and lysine labeled with
the stable 13C and/or 15N isotope) are incorporated into
cellular proteins during normal protein biosynthesis [204].
Thus, the cells to be compared (for example wild-type vs.
RNAi) are grown in media containing ‘light’ (normal) and
‘heavy’ (labeled) amino acids, respectively. After labeling,
the two cell populations are mixed, fractionated, and
subject to MS/MS analysis to quantify the differences
between their two proteomes in a highly accurate manner
[205,206]. Because the labels are carried by arginine and
lysine residues tryptic digestion produces peptides that
contain a labeled amino acid at the carboxy terminus. The
heavy and light tryptic peptides elute together as pairs
separated by a defined mass difference that allows the two
proteomes to be distinguished in the MS/MS analyses.
SILAC can be multiplexed to allow comparisons between
three different proteomes simultaneously. SILAC-based
differential labeling combined with RNAi, co-immuno-
precipitation and quantitative MS analysis was used to
detect and validate the cellular interaction partners of
endogenous b-catenin and Cbl proteins in mammalian
cells [202]. Alternatively, chemical labeling involves the
use of isobaric tagging reagents such as iTRAQ (isobaric
tags for relative and absolute quantification) [207] or TMT
(tandem mass tags) [208] (see Box 5.1 for definitions) to
label peptides after lysis and trypsinization. The peptides
in samples to be compared are modified by covalent

attachment of a unique tag or label, which enables the
quantification of the same peptide across multiple samples.
The uniquely labeled samples are combined and run
through an MS analysis. Despite bearing distinct tags, the
same peptides from the different samples are indistin-
guishable from each other in the first MS run, because the
molecular weight of each tag is the same. However, during
MS/MS each tag undergoes fragmentation, releasing
a signature reporter ion. The signature reporter ions differ
in mass between the tags and their relative levels serve as
a measure of differences in the levels of a given peptide
between samples. Labeling methods such as these provide
a rapid means by which to quantitatively examine global
proteome-level changes, and compare, for example, wild-
type cells with those subjected to mutations, RNAi
knockdown or small molecule treatments.

Transcriptional Profiling

Gene expression profiling using DNA microarrays, and
more recently RNA-seq, has emerged as a valuable tool for
broad correlation of gene activity with alterations in
physiological or developmental states [209e211]. Tran-
scriptional profiling experiments can be used to generate
compendia of gene expression data across different cell
types [212], diverse species [213], development times
[214], and in response to distinct stimuli [215]. Such gene
expression datasets have been commonly used to identify
genes that function in common pathways or which encode
components of the same complex. Studies in yeast have
demonstrated that proteins that interact with each other
show similar expression profiles to non-interacting
proteins [216e219]. Gene expression profiling has been
used to study signaling by wild-type and mutant receptor
tyrosine kinases (RTKs) and has provided evidence for
substantially overlapping immediate early transcriptional
responses upon activation of PLCg, PI3K, SHP2, and
RasGAP proteins and their respective signaling pathways
[220]. However, expression profiling studies do not
provide details of how and where in this network pathways
engage in cross-talk to specify the appropriate biological
response.

Although expression profiling studies have become the
gold standard for global responses to signaling, several
recent studies have shown that correlation between tran-
scriptome and proteome is only ~50% [221,222]. Proteo-
mics approaches that directly measure the targets of
signaling pathways e that is, the proteins e are more
useful. For example, Yates and colleagues [223] compared
protein abundance between wild-type C. elegans and those
lacking the worm insulin receptor (InR) ortholog daf-2.
This study revealed 86 proteins whose abundance changed
following loss of InR, an important finding for a signaling
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pathway with known effects at the translational rather than
the transcriptional level.

QUANTITATIVE RNAI SIGNATURES
OR PHENOPRINTS TO INFER CONTEXT
DEPENDENT INFORMATION FLOW
THROUGH CELLULAR SIGNALING
NETWORKS

The network maps discussed so far are primarily static and
do not provide information regarding the direction of
information flow through the nodes; instead, they provide
the framework required to begin to dissect the functional,
logical and dynamical nature of cellular signaling
networks. The topological features of signaling networks
reflect the need to process multiple input cues received by
a cell, interpret them correctly and transmit the information
to coordinate cellular activity and generate the proper
phenotypic response [224e226]. Thus, signaling networks
are highly dynamic, exist in distinct states, and are capable
of deploying the same or overlapping set of signaling
molecules in different ways, depending on the context and
the input cues received by the cell. It has been demonstrated
that, depending on the cumulative effects of the signals
received by a cell, JNK activity, for instance, can be either
pro- or anti-apoptotic [224, 226]. The challenge of future
studies is to gain a mechanistic understanding of the
direction of information flow, the dynamic nature of cross-
talk between signaling pathways, and the hierarchical
relationship between network components in response to
a distinct set of stimuli. Such mechanistic insights will
allow the generation of predictive (testable) models of how
this information processing capacity of signaling networks
is coopted in disease conditions to produce aberrant
phenotypes, and will lead to the identification of novel drug
targets and the development of more effective therapeutics.

In recent years it has been demonstrated, albeit on
a small scale, that systematically perturbing the compo-
nents of the network and simultaneously measuring
multiple quantitative phenotypes in the presence or absence
of specific input cues can be used to infer information flow
through signaling networks. The phenotypes measured can
include changes in gene expression, in phosphorylation of
key signaling or target proteins and/or in cellular
morphology. These quantitative phenotypes result from
multiplexed assays and are therefore different from the cell-
based assays used in RNAi HTS (described above), such
that, instead of measuring a single transcriptional reporter
or changes in the phosphorylation status of a single protein
in response to the knockdown of a gene, RNAi signatures/
phenoprints are composed of multiple measurements
ranging anywhere from tens to hundreds of genes or
proteins. A compilation of such quantitative phenotypes

provides a unique, context/signal specific ‘signature’ or
‘phenoprint’ for each perturbed network component.
Network components that are deployed in the same or
similar manner in response to the incoming signal would
tend to have similar phenoprints [227,228].

Direction of Information Flow from Gene
Expression Signatures

Transcriptional signatures resulting from the loss/reduction
of individual network components by RNAi can be used to
infer the flow of information through proteins that are
interconnected within a cellular network. This approach
was used successfully in analyzing the response of
Drosophila cells to microbial infection and lipopolysac-
charides (LPS) [229]. In these studies, the topology of
network connections was retrieved from experimentally
measured global transcriptional responses to successive
perturbations in pathway components. Genome-wide
expression profiling and loss-of-function experiments using
RNAi were used to determine the identity of the signaling
pathways that control microbial challenge-induced cellular
responses. Differential gene expression signatures
appeared with discrete temporal patterns after LPS stimu-
lation and septic injury, and could be assigned to the acti-
vation of distinct signaling pathways by impairing
pathway-specific components using RNAi. Specifically, the
results indicated that in addition to signaling through the
Toll and Imd pathways, microbial agents induce signal
transmission through the JNK and JAK/STAT pathways.
Altogether, this demonstrated how data obtained from
microarray expression profiling combined with the RNAi
technology could be used to extract interconnections
between different signaling pathways downstream of an
extracellular stimulus.

Whole genome expression profiling [230] has identified
gene expression signature-based analysis of signaling
networks in a number of different model systems. One of the
first successful applications of this approach was the
generation of a compendium of gene expression profiles in
yeast for 300 different mutations and small molecule treat-
ments [231]. The 300 different mutations and chemical
treatments specifically included 276 deletion mutants, 11
tetracycline-inducible essential genes and 13 small molecule
inhibitors (data available from Rosetta Inpharmatics). The
assumption was that the cellular state can be deduced from
the global gene expression response, and the transcriptional
profile of a gene in response to a change in cellular state
(disease, cellular activity such as cell division, response to
drugs or genetic perturbation) constitutes a unique quanti-
tative molecular phenotype [210,232e239]. The study
showed that genes known to be co-regulated could be easily
detected, and mutations in genes or treatments with small
molecules that regulate similar cellular processes displayed
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strikingly similar expression profiles. Most importantly, the
study was able to assign eight unannotated genes to the
regulation of pathways such as sterol metabolism, protein
synthesis and mitochondrial function. Furthermore, the
observation that gene expression profile in response to drug
treatment phenocopies the loss-of-function profile of its
target facilitated the identification of Erg2p, a sterol isom-
erase, as a novel target of the drug dyclonine [231].

Another study in Saccharomyces cerevisiae [240]
analyzed the functional relationship between kinases and
phosphatases by generating genome-wide expression
signatures for 150 deletion mutants. Gene expression
signatures were also generated for pairs of genes (kinases
and phosphatases) that exhibit synthetic genetic interac-
tions with the aim of investigating the mechanisms under-
lying the redundant relationships. The results of this study
concluded that there are three types of redundant connec-
tion: (1) complete redundancy, where the two genes in
a synthetic genetic interaction regulate the same set(s) of
genes to an equal extent, such that the single mutants show
no significant changes, but an effect on expression of
regulated gene set(s) is seen only in the double mutant; (2)
quantitative redundancy, where the two genes in a synthetic
genetic interaction regulate the same set(s) of genes but to
a quantitatively different extent. Here one of the single
mutants shows no significant effect but the other does, and
the effect on the expression of the regulated gene set(s) is
amplified in the double mutant; and (3) mixed epistasis,
where the two genes in a synthetic genetic interaction
regulate some of the same gene set(s) via either complete or
quantitative redundancy, while other gene set(s) behave in
a completely different way. Mixed epistasis reflects only
a partial overlap in function of the two genes in the
synthetic genetic interaction. The authors concluded that
such gene pairs share additional regulatory associations,
such as inhibition of one by the other, and that mixed
epistatic relationships provide the mechanisms to achieve
signaling specificity in a context-dependent manner.
Importantly, mixed epistasis was found to be the most
common redundant relationship in signaling networks.

The Connectivity Map (Cmap) [241,242], identified
functional connections between drugs, genes and diseases
from expression profiles in a compilation of genome-wide
expression data from cultured human cells treated with
either bioactive small molecules or genetic perturbations.
Cmap incorporates pattern-matching algorithms that
decode differential gene expression data into functional
relationships between drugs, genes and diseases to generate
testable hypotheses. Again, the underlying assumption of
Cmap is that common gene expression changes reflect
functional connectivity between the gene products targeted
by either small molecule or various genetic perturbations.
Functional connectivity is expected to reflect the role of
gene products in a common biological process, in particular

components of a specific signaling pathway. Cmap was
used to identify the target of two previously uncharac-
terized natural products (celastrol and gedunin) that had
inhibitory activity towards androgen receptor activity, with
implications for the treatment of prostate cancer [243].
Gene expression signatures for each of the drugs were
generated and used to search the Cmap database for similar
gene expression patterns. The gene expression signatures of
celastrol and gedunin were most similar to the signatures of
inhibitors of the chaperone HSP90. This finding predicted
that HSP90 was the most likely target of celastrol and
gedunin activity, a hypothesis that was tested and validated
experimentally. In another study, rapamycin was found to
reverse the effects of resistance to the glucocorticoid
dexamethasone in acute lymphoblastic leukemia (ALL)
[244].

A number of publicly available compendia of gene
expression profiles are available for data mining purposes,
including the Global Cancer Map [245], Gene Expression
Atlas [246,247], and Oncomine Cancer Profiling Database
[248].

The overall logic of establishing connectivity based on
gene expression signatures of RNAi treated cells is simple
and schematically presented in Figure 5.2. The current
challenge is to go beyond proof-of-principle studies and
establish robust experimental protocols and computational
tools that will allow large-scale implementation. This
presents three main challenges: (1) the generation of gene
expression signatures for every biological state of interest
(disease, cellular activity such as cell division, response to
drugs or genetic perturbation); (2) a cost-effective high-
throughput platform for screening genetic perturbations or
small molecule treatment using gene expression signatures;
and (3) the development of computational tools for data
analysis.

Gene expression signatures serve as molecular surro-
gates for biological states, are composed of tens to
hundreds of genes, and are distinct for different biological
states [235,249]. The ability to identify a gene expression
signature that can serve as a quantitative molecular
phenotype for a specific biological state holds great
promise for the development of high-throughput small-
molecule or RNAi screens using the signature of interest as
the readout. The first gene expression signature-based
screening (now called gene-expression-based high-
throughput screening, GE-HTS) was conducted [249] to
identify small molecules that induce the differentiation of
acute myeloid leukemia cells. Using gene expression
analysis of primary cells from patients and unaffected
individuals identified a number of differentiation-
correlated genes to generate a five-gene signature for
leukemia cell differentiation. This signature was then used
to screen a library of 1739 bioactive small molecules
to identify those that induce the expression of the
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differentiation-correlated signature genes in leukemia cells.
This study identified eight bioactives that were further
validated as bona fide differentiation inducers.

The success of the first GE-HTS [249] led to the devel-
opment of the Luminex xMAP technology suitable for HTS

(see Box 5.2 for details on the Luminex technology). The
technology combines multiplex ligation-mediated amplifi-
cation [250e252] with optically tagged and barcoded
microsphere and flow cytometric detection. The technology
is currently capable of measuring up to 500 transcripts
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given the linear structure and flow of information of the

network shown in A, perturbing any of the network

components will affect the expression of target genes

E1eE6 in a similar manner as depicted in the sche-

matized heat map. D: Given a set of gene expression

signatures generated by perturbing the components of

a network, it should be possible to reconstruct the

structure of the network and deduce the flow of infor-

mation through its resident components.
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within a single reaction in thousands of samples in a cost-
effective manner [253]. (http: //www.luminexcorp.com)

GE-HTS has also been recently adopted to dissect the
regulatory network controlling the transcriptional response
of mouse primary dendritic cells to pathogens [215]. A 118-
gene signature that defines the response of mouse primary
dendritic cells to infection by pathogens was established
using expression profiling of dendritic cells exposed to
different pathogen-derived components (virus, Gram-
positive and Gram-negative bacteria). The gene expression
signature was then used to screen 125 transcription factors,
including proteins that modify chromatin and proteins that
bind RNA, for their role(s) in coordinating cellular
response to pathogen infection. The reconstructed network
model composed of the transcription factors and their
cognate upstream signaling pathways helps to explain how
pathogen-sensing pathways achieve specificity in their
response to different microbial populations. The study used
a screening platform called NanoString nCounter Gene
Expression Assay (see Box 5.3 for details on the Nano-
string technology). The nCounter Gene Expression Assay
is a robust and highly reproducible method for detecting the

expression of up to 800 genes in a single reaction. The
biggest advantages of this platform are its high sensitivity,
requirement for very small amounts of total RNA as start-
ing material, and the lack of any enzymatic reactions to
convert total RNA to cDNA and amplification of resulting
cDNA by polymerase chain reaction (PCR).

Direction of Information Flow from
Phosphorylation Signatures

Similar to gene expression signatures, the biological state
of a cell can also be inferred from the phosphorylation
profile of proteins that are themselves components of the
cellular signaling network, as well as of proteins that form
a part of the cellular response to signals impinging on the
cell. Protein phosphorylation is a widespread post-trans-
lational modification and plays important roles in most
biological processes in eukaryotic cells. The addition of
phosphate groups on substrate proteins by kinases modu-
lates the overall function of the substrates by directing their
activity, localization and stability. Extensive protein-phos-
phorylation-mediated signaling networks direct the flow of

Box 5.2 Luminex xMAP technology for multiplex gene expression analysis

The Luminex xMAP Technology (http: //www.luminexcorp.

com) can be used to perform a wide variety of multiplex

assays on the surface of 5.6 mm polystyrene microspheres. Each

microsphere or bead is uniquely color-coded internally using

precise concentrations of red and infrared fluorescent dyes,

resulting in 500 spectrally distinct beads. This feature allows

multiplexing of 1e500 analytes in a single sample. The surface

chemistry of the microspheres allows capture reagents to be

efficiently coupled to the beads to facilitate the measurement of

different kinds of analyte in the sample. For example, capture

reagents may include oligonucleotides, antibodies, peptides,

enzyme substrates, or receptors, thus offering a wide range of

applications, including gene expression analysis, detection of

single nucleotide polymorphisms, protein expression analysis,

detection of proteineprotein interactions, quantification of

antibody affinity and epitope mapping, serum analyte profiling

and detection of enzyme/substrate or receptoreligand reac-

tions. After the analyte of interest (transcript, antibody, antigen,

ligand, or substrate) is captured from the sample on the surface

of the beads, the reactions are quantified in the Luminex

analyzer, an instrument that combines high-tech fluidics based

on the principles of flow cytometry and laser optics for signal

detection and processing. In the analyzer, the microspheres

pass through the detection chamber in a single file such that the

reaction between the surface coated capture reagent and the

analyte of interest can be quantitatively measured for each

bead. In the detection chamber, a red laser or light-emitting

diode (LED) is first used to classify each microsphere to one out

of the 500 spectrally different sets. A second laser or LED

excites the fluorescent dye associated with the reporter mole-

cule that is used to detect the analyte of interest.

Peck and colleagues [253] developed the Luminex xMAP

technology for gene expression signature analysis. Messenger

RNA (mRNA) transcripts from each sample are captured on

immobilized poly-dT in 384-well plates and are reverse tran-

scribed to complementary DNA (cDNA). For each gene/tran-

script of interest two oligonucleotide probes are designed. The

50 probe contains a 20 nt sequence complementary to the T7

primer site, a unique 24 nt sequence that serves as a barcode,

and a 20 nt sequence complementary to the transcript of

interest. Each 30 probe is phosphorylated at its 50 end and

contains a 20 nt sequence contiguous with the gene-specific

fragment of the 50 probe followed by a 20 nt T3 primer site.

Probe pairs for the transcripts of interest are mixed with cDNA

from each sample, unbound probes are removed, and probe

pairs annealed to contiguous regions of target mRNAs are

ligated together to yield synthetic 104 nt templates for ampli-

fication. Universal T3 and 50-biotinylated T7 primers are used

to amplify the templates by PCR. The resulting biotinylated and

bar-coded amplicons are hybridized to a pool of spectrally

distinct microspheres. Each microsphere presents on its surface

a distinct capture probe complementary to one of the barcodes.

The hybridization reactions are finally reacted with streptavi-

din-phycoerythrin to fluorescently label biotin labels. Captured

labeled transcripts of interest are quantified and beads decoded

in the Luminex analyzer as described above. Luminex xMAP

assays are carried out in a 96-well plate format, with up to 500

genes being measured in each well/sample.
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information from cell surface receptors to effector mole-
cules to regulate the response and functions of cells, tissues
and organisms. Aberrant signaling due to misregulation of
protein phosphorylation and dephosphorylation cascades is
associated with many disease states, including most types
of cancer.

A multiplex approach using phospho-specific anti-
bodies and intracellular phospho-specific flow cytometry
[254,255] to monitor changes in the level of phosphoryla-
tion of multiple key protein nodes in primary leukemic cells
has been shown to have great potential in understanding
how signaling through a network is co-opted in cancer cells
to produce the aberrant phenotypes [256]. Phospho-specific
antibodies to Stat1, Stat3, Stat5, Stat6, p38, and Erk1/2
were used to profile primary cells from patients with acute
myeloid leukemia at basal state and following cytokine
stimulation. Phosphorylation profiles of the six signaling
proteins in acute myeloid leukemia cells were compared to
those in normal blood cells to distinguish the leukemic
signal transduction network from the healthy network.
Using the same methodology, it is also possible to measure
the effects of perturbations (genetic or small molecule) on
these signaling events in cancer cells compared to normal
cells with the aim of identifying potential drug targets.

Furthermore, one could determine the effect of such
perturbations in either attenuating or enhancing the
response of the cancer cells to other environmental cues.

Multicolor flow cytometry [257] has been used to
measure 11 phosphoproteins and phospholipids simulta-
neously in response to stimulatory or inhibitory perturba-
tions (small molecule inhibitors of key signaling
components) to determine the effects of each condition on
the cellular signaling networks in naive CD4þ T primary
cells. Bayesian network analysis was applied in order to
infer causal connections between components of the
network. Key to the success of this application was the use
of the phosphorylation signatures of the 11 phosphoproteins
and phospholipids in response to stimuli and perturbations.

Both studies discussed above use phospho-specific
antibodies to key signaling or response proteins [256,257].
Such studies are limited by the availability of specific
antibodies that recognize phosphorylated residues on
proteins of interest. Proteome-scale MS-based studies
provide one of the most comprehensive analyses of phos-
phorylation and do not depend on antibodies [258e260].
MS-based technologies provide highly quantitative and
direct measurements that can detect the activities of many
phosphorylation pathways simultaneously. The KAYAK

Box 5.3 Nanostring nCounter System for Mulplex Gene Expression Analysis

The nCounter assay can be used to detect several types of

nucleic acid molecule, including mRNA, DNA and micro-

RNAs. The nCounter assay is based on direct imaging of mRNA

molecules of interest that are detected using target-specific,

color-coded probe pairs [273]. It does not require the

conversion of mRNA to cDNA via reverse transcription or the

amplification of the resulting cDNA via PCR. A pair of

sequence-specific probes e the capture and reporter probes e

detects each target gene of interest. The capture probe contains,

from 50 to 30, a 35e50-base sequence complementary to the

target mRNA, a short sequence common to all capture probes,

and a biotin affinity tag that provides a molecular handle for the

attachment of target genes to facilitate detection. The reporter

probe contains, from 30 to 50, a second 35e50-base sequence

(complementary to the same target mRNA, near or contiguous

with the target-specific sequence in the capture probe partner),

a short sequence common to all reporter probes, and a color-

coded molecular barcode. The common sequences included in

all capture and reporter probes facilitate the removal of

unbound excess probes during post-hybridization steps. The

barcode contained in each reporter probe is composed of

a linearized single-stranded M13 DNA molecule annealed to

a series of six complementary RNA segments, each labeled with

one of four spectrally non-overlapping fluorescent dyes. The

arrangement of the differently colored RNA segments creates

a unique color code for each target gene of interest. The

different combinations of the four distinct colors at six

contiguous positions allows for a large diversity of color-based

barcodes, each designating a different gene transcript, that can

be mixed together in a single reaction for hybridization and still

be individually resolved and identified. The methodology offers

the flexibility of multiplexing up to 800 reporterecapture probe

pairs within a single reaction.

The target mRNA is mixed in solution with a large excess of

the reporter and capture probe pairs, so that each targeted

transcript finds its corresponding probe pair. After hybridiza-

tion, excess unbound probes are washed away and the

complexes, comprising target mRNA bound to specific repor-

terecapture probe pairs, are isolated. The biotin label at the 30

end of the capture probes is used to attach the complexes to

streptavidin-coated slides. An electric field is applied to orient

and extend the tripartite complexes on the surface of the slide to

facilitate imaging and detection of the color-coded molecules.

A microscope objective and a CCD camera are used to image

the immobilized complexes. The number of molecules for

a particular mRNA species is counted by decoding the unique

pattern of the fluorescent colors encoded in each reporter

probe. The protocol is performed from start to finish on the

nCounter System, which is designed to provide hybridization,

post-hybridization processing, and digital data acquisition

capabilities in one simple workflow. The integrated system is

composed of two instruments: the fully automated nCounter

Prep Station for post-hybridization processing and the Digital

Analyzer for imaging, data collection, and data processing.
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(kinase activity assay for kinome profiling) method [261]
can be used for the multiplexed measurement of phos-
phorylation events on 90 different peptides directly from
cell lysates (see Box 5.4 for details on the KAYAK tech-
nology). Phosphorylated peptides are enriched using
immobilized metal-ion affinity chromatography and
analyzed by LC-MS techniques.

In addition to providing direct measurements on a pro-
teome-wide scale, quantitative MS approaches facilitate the
comparison of phosphoproteomes between wild-type cells
and cells that have undergone manipulations of their
signaling network components. In a recent study using
mutant strains of S. cerevisiae, a label-free, quantitative
phosphoproteomics approach was employed to determine
the relationships between 97 kinases and 27 phosphatases
and more than 1000 phosphoproteins [262]. Strikingly,
inactivation of most (77%) kinases and phosphatases
affects their immediate downstream targets as well as
a large proportion of the overall signaling network. Owing
to the inherent variation that exists between LC-MS
experiments from run to run, label-free quantitation
provides a relatively imprecise measurement of the differ-
ences in the phosphoproteome between wild-type and
mutant yeast cells. Recent advances in techniques such as
SILAC and chemical labeling, as well as improved sensi-
tivity and dynamic range of peptide identification by
current MS-based technologies, is enabling comprehensive

and reproducible assessment of differences in phospho-
proteomes [263]. Many groups have begun to apply this
promising global approach to identify the effects of
network perturbations on changes in the phosphoproteome
[262,264e266]. iTRAQ labeling and phosphatase treat-
ment was used to identify phosphorylation sites on the
purified, auto-activated tyrosine kinase domain of fibroblast
growth factor receptor 3 (FGFR3-KD) and to analyze
complexes formed around the insulin receptor substrate
homologue (chico) immunopurified from Drosophila mel-
anogaster cells that were either stimulated with insulin or
left untreated [267]. In two recent studies of the insulin
signaling network in mammalian cells, Grb10 was identi-
fied as a mTORC1 substrate and was shown to be involved
in feedback inhibition of the phosphatidylinositol 3-kinase
(PI3K) and extracellular signal-regulated, mitogen-acti-
vated protein kinase (ERK-MAPK) pathways [268,269].
iTRAQ has also been used to compare the phosphopro-
teomes of cells treated with insulin to activate the pathway
and cells that were pretreated with Torin 1 before insulin
activation [268]. Torin 1 is a novel adenosine 50-triphos-
phate (ATP)-competitive mTOR kinase domain inhibitor
that blocks all known activities of both mTORC1 and
mTORC2 complexes [270]. Yu and colleagues [269] used
SILAC to quantify differences in the phosphoproteome of
TSC2�/� MEFs in the presence and absence of rapamycin,
as well as in the absence or presence of a drug

Box 5.4 KAYAK (Kinase Activity Assay for Kinome Profiling) Method for Multiplex Analysis of Kinase Activities

KAYAK is a multiplexed, MS-based kinase assay developed to

measure the activity of multiple kinases from the same sample

lysate [261,274]. A single MS run directly measures the phos-

phorylation of 90 synthetic peptides, thus providing a multi-

plexed assay to simultaneously monitor kinase activities from

multiple signaling pathways. Key to the success of the KAYAK

method is the design and synthesis of substrate peptides that

can represent activity through the different core cellular

signaling pathways. This set of substrate peptides also includes

synthetic peptides containing phosphorylation sites with no

associated kinase. Such peptides are identified from large-scale

phosphoproteomics studies of cellular signaling networks and

can be used to identify the responsible kinase via perturbation

assays. The peptides are composed of 10e15 amino acid resi-

dues, with five residues upstream and four residues downstream

of the phospho-acceptor site, and a C-terminal tripeptide of

prolineephenylalanineearginine to facilitate the incorporation

and quantification of the stable isotope. The set of peptide

substrates whose phosphorylation reflects activity through

multiple signaling pathways is incubated together with a cell

lysate to allow for phosphorylation by active kinases in the

lysate. The in vitro kinase reactions are quenched, followed by

the addition of stable isotope-labeled phosphopeptides of

identical sequence (as internal standards), at a known

concentration. Immobilized metal-ion affinity chromatography

is used to enrich the phosphorylated substrate peptides and

internal standard phosphopeptides, which are then analyzed by

LC-MS techniques. The light (product) and heavy (internal

standard) peptide pairs differ in mass by 6 daltons (Da) and

although they co-elute, they can be quantified by the ratio of

light-to-heavy areas under the curve from the raw spectra. Since

the amount of each heavy phosphopeptide added is known, the

ratio of the light to the heavy phosphopeptide provides the

absolute amount of each product formed during the kinase

reaction. The in vitro kinase reactions are carried out in

a reaction volume of 50 mL and require only nanogram to

microgram amounts of cell lysate. 5 mM of each substrate

peptide is used in the reaction to reduce cross-phosphorylation

of peptides by different kinases.

The KAYAK method was first applied to profile the activity of

kinases in different cellular contexts, including mitogen-

induced cell proliferation, inhibition of signaling pathways by

known small molecule inhibitors, and a number of breast

cancer cell lines [261]. This study also identified that a peptide

derived from a PI3K regulatory subunit was a novel Src family

kinase site in vivo.
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(Ku-0063794, an ATP-competitive mTor inhibitor) leading
to the identification of rapamycin-insensitive substrates of
mTORC1 and mTORC2.

CONCLUDING REMARKS

Building on several decades of targeted classic genetics
approaches, unbiased high-throughput technologies are
beginning to generate a systems-level view of cellular
signaling networks. In this chapter we have reviewed
a number of experimental methods available to generate
a comprehensive ‘parts list’ of cellular signaling networks.
Further, we have described various approaches that can be
used to construct network models based on the phenotypic
signatures of each component. These techniques give us the
unprecedented opportunity to evaluate globally and
systematically the contribution of all genes to a specific
biological process. However, the implementation of these
methods is technically challenging and in some cases they
are best used in combination, as integration of data sets
increases the quality of the networks. Although the false
positive and false negative rates for networks generated
from high-throughput methods are currently relatively
high, new experimental techniques and new methods for
integrating multiple interacting data types will allow these
networks to become powerful predictive tools.

A global view of cellular networks holds great promise
in advancing our mechanistic understanding of how indi-
vidual genetic alterations, as well as combinations of gene
mutations, lead to a disease phenotype. For example,
sequencing of cancer genomes [271] and genome-wide
association studies [272] have identified hundreds of
genetic aberrations that are linked to different cancers and
complex diseases such as diabetes, obesity, hypertension
and Crohn’s disease. Comprehensive structure/function
analysis of networks should help to understand the bio-
logical functions of many of the affected genes. Impor-
tantly, network analyses will facilitate the selection of
protein targets for therapeutic intervention based on the
underlying mechanisms of action. Furthermore, network
maps will shed light on how certain drugetarget interac-
tions may lead to toxic effects. Such a mechanistic under-
standing is critical to the development of effective and safe
treatments. Eventually, generation of comprehensive
dynamic models of protein networks in response to signals
over time will allow scientists to quantitatively predict the
outcome of various perturbations.
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