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The endoribonuclease Arlr is required to
maintain lipid homeostasis by
downregulating lipolytic genes during aging

Xiaowei Sun1, Jie Shen 1, Norbert Perrimon 2,3, Xue Kong 1 & DanWang 1

While disorders in lipid metabolism have been associated with aging and age-
related diseases, how lipid metabolism is regulated during aging is poorly
understood. Here, we characterize the Drosophila endoribonuclease CG2145,
an ortholog of mammalian EndoU that we named Age-related lipid regulator
(Arlr), as a regulator of lipid homeostasis during aging. In adult adipose tissues,
Arlr is necessary formaintenance of lipid storage in lipid droplets (LDs) as flies
age, a phenotype that can be rescued by either high-fat or high-glucose diet.
Interestingly, RNA-seq of arlrmutant adipose tissues and RIP-seq suggest that
Arlr affects lipid metabolism through the degradation of the mRNAs of lipo-
lysis genes – amodel further supported by the observation that knockdown of
Lsd-1, regucalcin, yip2 or CG5162, which encode genes involved in lipolysis,
rescue the LDdefects of arlrmutants. In addition, we characterizeDendoU as a
functional paralog of Arlr and show that human ENDOU can rescue arlr
mutants. Altogether, our study reveals a role of ENDOU-like endonucleases as
negative regulator of lipolysis.

Lipid droplets (LDs) are highly dynamic organelles that contain a core
of neutral lipids including triacylglycerols (TAGs) and cholesteryl
esters, which are surrounded by a phospholipid monolayer1,2. While
mostly found in the adipose tissue, LDs are also present in other cells
including hepatocytes, enterocytes, macrophages, and adrenocortical
cells to store excess lipids. These spherical organelles are regulated by
LD-associated proteins which regulate LD biogenesis and degradation,
and that play a crucial role inmaintaining lipid homeostasis and energy
supply3.

LDs originate from the bilayer endoplasmic reticulum (ER)4–7

where the curvature of ER tubules (smooth ER) catalyzes the
nucleation of neutral lipids into lenses leading to nascent LD
buds8,9. During de novo synthesis, LD size is regulated by Seipin
and the Fat Storage-inducing Transmembrane (FIT) proteins,
which are associated with lens formation and budding10–13. In
addition, LD growth is regulated by TAG synthesis enzymes (e.g.,
GPAT4, AGPAT3, DGAT1, and DGAT2), which relocalize from the ER
to the LD surface14. An alternative mechanism of LD growth is the

fusion of existing small LDs by either coalescence or lipid
exchange15–17.

LD degradation is mediated by lipolysis and lipophagy pathways.
During lipolysis, TAG hydrolysis is initiated by adipose triglyceride
lipase (ATGL), followed by hormone-sensitive lipase (HSL) that
hydrolyzes diacylglycerol (DAG) and monoacylglycerol lipase (MGL)
that hydrolyzes monoacylglycerol (MAG), releasing free fatty acids for
further degradation through mitochondrial or peroxisomal β-
oxidation to generate ATP18,19. LDs can also be degraded through
autophagy/lipophagy20 whereby the whole LD is sequestered by
autophagosomes, which is then delivered to lysosomes where it is
degraded by lipases20,21. The lipolysis pathway prefers to hydrolyze
larger-sized LDs and produces small LDs, whereas the lipophagy
machinery can only engulf small LDs, inhibition of which results in
accumulation of small LDs22.

A number of key proteins have been identified as regulators of the
size and number of LDs, such as cell death-inducing DFFA-like effector
c (CIDEC) proteins and perilipins3. In adipocyte cell lines, FSP27/CIDEC
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is enriched at LD-LD contact sites and mediates directional transfer of
lipids from smaller to larger LDs17. Located at the surface of LDs, PLIN1,
the best characterized LD perilipin (PLIN), plays a dual role in lipid
metabolism, limiting lipase access to stored TAGs in the fed state or
facilitating in the fast state hormonally-stimulated lipolysis23–25. Phos-
phorylated PLIN1 serves as a scaffold for lipases to drive lipolysis21,23,24,
and for proteins such as FSP27 to regulate LD growth3. Consistent with
this, in Drosophila the lipid storage droplet protein 1 (Lsd-1/PLIN1)
stimulates lipolysis by recruiting HSL to the LD surface26–28, while Lsd-
2/PLIN2 promotes lipogenesis by antagonizing ATGL/Brummer (Bmm)
activity29,30.

Understanding LD dynamics and metabolism is of great sig-
nificance for lipid metabolism-associated disorders, aging, and
lifespan18,31,32. For example, during aging a change in overall lipid
metabolism has been observed, usually leading to lipid accumulation
in the adipose tissue and ectopic accumulation in non-adipose tissues,
which increases the risk of developing metabolic diseases33. Other
studies have demonstrated that the activity of HSL is reduced in the
aged adipose tissue34,35, which is consistent with lipid changes in aging
organisms. Further, genetic studies on enzymes that regulate bio-
synthesis and mobilization of neutral lipids, such as diacylglycerol
acyltransferase 1 (DGAT1) in mice36, or ATGL and diacylglycerol lipase
(DAGL) in C. elegans and Drosophila37–40, support the association of
increased lipolysis with longevity. On the other hand, increased TAG
levels with extended lifespan are also observed along with increased
fat synthesis and breakdown41,42, indicating that increased lipid mobi-
lization helps extend lifespan42,43. In addition, lipid metabolism is
regulated by highly conserved pro-longevity signaling pathways, such
as insulin/insulin-like growth factor signaling (IIS) and mechanistic
target of rapamycin (mTOR) signaling, as well as by dietary restriction.
These pathways extend lifespan, usually through activation of lipolysis
via upregulation of lipases, desaturation of fatty acids, and lipophagy18.
In particular, the transcription factor FoxO, which is inhibited by IIS
and activated by starvation, stimulates ATGL/Bmm and other lipases
through transcription or indirect modifications to promote
lipolysis44–46. Despite these studies, howLDs are regulatedduring aging
is poorly understood.

Here, we identify the endoribonuclease (EndoU) Arlr as an age-
related lipid regulator. The EndoU family proteins have a conserved
RNA binding domain that cleaves single-stranded RNA harboring
U-rich sequences47–52.We find that high expression levels of Arlr during
aging are essential for lipid accumulation in LDs and that loss of arlr
results in rapid lipid consumption. Mechanistically, we show that Arlr
controls the homeostasis of LDs by affecting the stability of mRNAs
encoding proteins involved in lipolysis. In addition, we demonstrate
that both a paralog of Arlr, DendoU, and human ENDOU also act as
negative regulators of lipolysis, as they can recue arlr mutants.

Results
Lipid storage is reduced in arlr mutants during aging
To investigate the function of arlr in vivo, we analyzed the expression
levels of arlr at different developmental stages. Interestingly, although
arlr is expressed at all stages, expression of arlr was much higher
during adult stages, which is consistent with a previous report50. Fur-
ther, arlr mRNA expression was high at all adult stages examined
(1 week to 5weeks) (Fig. 1a). Consistent with this, examination of single
nuclei RNAseq (snRNAseq) dataset from the Fly Cell Atlas (FCA) and
Aging Fly Cell Atlas (AFCA) reveal higher expression levels of arlr in fat
body nuclei at 30, 50, and 70 days as compared with 5 days (Supple-
mentary Fig. 1a)53,54. FCA data also indicate that among the 15 groups of
individual tissues, arlr is only highly expressed in the fat body53. In
addition, we confirmed that Arlr was expressed in the fat body, colo-
calizingwith the ER. The endogenousArlr-GFP fusion protein showed a
punctate distribution in the cytoplasm that co-localized with KDEL-
mCherry, a marker of the ER (arlr-GFP; ppl >KDEL-mCherry). Further,

an HA-tagged form of Arlr (Arlr-HA) also co-localized with the ER
marker (Supplementary Fig. 2a, b). These observations are consistent
with our previous proximity labeling analysis where we identified Arlr
as a fat body-expressedprotein55. Altogether, these results suggest that
Arlr plays an important role in the fat body during aging.

Next, to analyze the role of arlr in adipose tissues, we generated
two null mutant alleles, arlr262 and arlr364, using CRISPR/Cas9mediated
genome editing. arlr262 and arlr364 were associated with a deletion of
262 bp and 364 bp in the coding sequence region, respectively (Sup-
plementary Fig. 3a, b). Interestingly, although no mRNA was detected
with primers flanking the deleted regions associated with the two
mutations, we did observe residual mRNA expression with a primer
pair located at the N-terminus (Supplementary Fig. 3c), indicating that
these mutations lead to truncated mRNAs. Homozygous mutants are
viable, indicating that loss of arlr is not essential for zygotic viability.
Whereas larvae and young (1 week old)arlr262mutant adults showedno
obvious phenotypes in body size and lipid storage (Supplementary
Fig. 4), which is consistent with our previous study55, 3-week-old arlr
mutants (arlr262 and arlr364) exhibited smaller LDs in both females
(Fig. 1b, Supplementary Fig. 5a–c) and males (Supplementary Fig. 6b,
c). This phenotype was even more obvious in 5-week-old flies (Fig. 1b,
Supplementary Fig. 6e, f). Quantification of LD sizes showed a greater
reduction of large droplets and an increase in small droplets (Fig. 1c, d,
Supplementary Fig. 6g, h). The proportion of LDs measuring less than
4.0 μm2 accounted for 86.5% and 77.7% of the total in arlr262 and arlr364

mutants, respectively, compared to 52.5% in control flies (Fig. 1d’). In
addition, LDs larger than 14.0 μm2 accounted for only 1.1% and 1.6% of
the total in arlr262 and arlr364 mutants, respectively, compared to 18.3%
in control flies. Further, TAG levels, an indicator of lipid storage, were
slightly decreased in 3-week-old flies and greatly reduced in 5-week-old
flies (Fig. 1e, Supplementary Fig. 6i). Consistent with the mutant phe-
notypes, interfering with arlr expression in the fat body using two
independent RNAi lines resulted in similar defects (Supplementary
Fig. 7). In contrast to the effect on LDs, there were no obvious effects
on the levels of glucose and trehalose in arlr mutants (Fig. 1f, g, Sup-
plementary Fig. 6j, k). Altogether, these results suggest that Arlr reg-
ulates lipid metabolism during aging, resulting in a reduction in
LD sizes.

Since LDs andTAG levels are reduced in older arlrmutant flies, we
wondered whether Arlr affects lifespan. Interestingly, arlr mutant
females (arlr262 or arlr364) exhibited shorter lifespan (about 80 days)
compared to the control (about 100 days) (Fig. 1h). The median life-
span was 60 and 65 days in the mutants, while it was 80 days in the
control.Maleflies showed a similar trend,with a 45-days lifespan inarlr
mutants compared to 60 days in control animals (Supplementary
Fig. 6l). Again, lifespan was reduced in arlr-knockdown flies (Supple-
mentary Fig. 7d, h). Thus, loss of arlr decreases lifespan.

The EndoU-like domain is necessary for the role of Arlr in lipid
metabolism
Arlr is a 592 amino acids (a.a.) protein with four distinct domains, a
putative signal peptide, a proline-rich domain, a glycine-rich domain,
and an EndoU-like domain (Supplementary Fig. 3a). We generated
several transgenic flies to define the region(s) essential for LD storage,
and validated them by PCR, qRT-PCR, and Western blots (Supple-
mentary Fig. 3). Expressing full-length tagged Arlr in the fat body
(ppl>UAS-arlr-HA) rescued the LD storage defects, i.e., lipid size and
TAG levels (Fig. 2e, j, k). Interestingly, flies expressing the protein
without the signal peptide (SP) (ppl >UAS-arlrΔSP-HA) showed larger
LDs (Fig. 2f, j, k). This gain-of-function phenotype suggests that the
function of Arlr in the fat body is independent of its putative signal
peptide and does not require secretion. We also constructed a tagged
transgenic fly lacking the conserved EndoU-like domain (UAS-arlrN-
HA). Expression of arlrN-HA in the fat body (ppl >UAS-arlrN-HA) of arlr
mutants could not rescue the LD defects or TAG levels (Fig. 2i–k),
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indicating that the EndoU-like domain is necessary for Arlr function
in LDs.

arlr mutants show an increase in lipid consumption
Fat accumulation is determined by the balance between fat synthesis
and fat breakdown. Under starvation conditions, stored TAGs are
hydrolyzed into fatty acids and glycerol to meet the energy demand.
To investigate the role of Arlr in lipid homeostasis, we starved 1-week-
old flies to activate lipolysis. When starved, control flies consumed
lipids, as evidenced by a reduction in the number of LDs after 24h of
starvation. Strikingly, after 24 h of starvation, arlr262mutants contained
fewer LDs, especially large LDs (Fig. 3a, c), suggesting a faster con-
sumptionof lipids. In addition, the TAG level of arlrmutants was about
70% less than control (Fig. 3d). 5-week mutants starved for 24 h also

showed faster lipid consumption (data not shown). Altogether these
results suggest that lipolysis is increased in the absence of Arlr.

Next, to investigatewhether lipid synthesis is regulatedbyArlr, we
fed 5-week-old flies for a period of 24 h with either a high sugar or a
high-fat diet (see “Methods”). Under these conditions, LD sizes and
numbers in arlr mutant fat bodies were similar to controls (Fig. 3b, c)
and TAG levels were restored (Fig. 3d). These results indicate that the
amount of fat can be replenished through food uptake.

Next, we testedwhether the decrease in lifespan of arlrmutants is
related to reduced nutrition by feeding flies with either a low or a high
nutrition diet. arlr262 mutant female flies fed with a poor nutrition diet
had a shorter lifespan (40 days compared to 50 days for the control).
Themedian lifespanwas 29 days and 40days, respectively. In contrast,
the lifespan was similar to the control (about 100 days, Fig. 3e) when
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Fig. 1 | arlrmutants have reduced lipid storage. All panels in this Figure are from
females. aRelative expression levels of arlr at various developmental times. n = 5 or
6 biologically independent experiments. ns, no significant difference with the
control, P = 0.7; ***P <0.001 from 1 week to 5 weeks. b Lipid staining illustrating the
increase of small LDs in aged arlrmutant flies. LDs (Nile Red, red) shown are
adjacent to the nucleus (DAPI, blue) at the tissue mid-plane unless mentioned
elsewhere. 3-week-old arlrmutants (arlr262 and arlr364) have smaller LDs, a pheno-
type that ismore severe in 5-week-old flies. c, d Reduction in average LD area in arlr
mutants. The percentage of large LDs (>14 μm2) was reduced, while the small LDs
(<4.0μm2)was significantly increased (d’). For (d’),we sorted all LDs by size for each
genotype and counted their numbers which were then divided to the total LD

number. n = 6 biologically independent animals (3 samples in each animal).
*P =0.02 for arlr262 and *P =0.04 for arlr364 in (c); ***P <0.001 in (d). e Relative
reduction in TAG amount in arlrmutant flies. **P =0.007 and *P =0.01 at 3 weeks;
***P <0.001 at 5 weeks. f, gGlucose and trehalose amounts of the whole body were
normal.n = 3biologically independent experiments in (e–g). ns P =0.0535 forarlr262

and P =0.2254 for arlr364 in (f); ns P >0.99 in (g). h Lifespan of female flies. Dashed
lines indicate the median lifespan. n = 1 biologically independent experiment.
***P <0.001. Statistical data were analyzed by one-way ANOVA with Tukey’s multi-
ple comparison test in (a) and (c–g), and by Log-rank (Mantel-Cox) test in (h). Error
bars represent SEM. Scale bars in (b) are 20μm.
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arlr262 mutant flies were fed with a high nutrition diet. The median
lifespan was 77 days and 81 days, respectively. As lipid consumption
was accelerated but lipid replenishment was normal in older mutant
flies, this result suggests that lifespan of arlr mutants can be reduced
by malnutrition and restored by higher nutrition.

arlr genetically interacts with lipolytic genes
Since the EndoU family proteins are endoribonucleases that cleave
RNAs with the U-specific recognition sequence50, we wondered whe-
ther Arlr regulates lipolysis by modifying the mRNAs of lipolytic pro-
teins. Thus, we performed RNA-seq to analyze gene expression in
arlr262 mutant adipose tissues attached to the abdominal cuticle and
identified 580 upregulated and 384 downregulated differentially
expressed genes (DEGs) (Supplementary Fig. 8a). GO enrichment
analysis revealed that the oxidation-reduction process and oxidor-
eductase activity were the most prominent terms (Supplementary
Fig. 8b). Among the DEGs, 48 genes related to lipid metabolism were
upregulated and 12 were downregulated (Fig. 4a, Supplementary
Fig. 8c, Supplementary Data 1). Strikingly, 40 genes related to lipolysis
were within the 60 lipid metabolism-related genes, 10 of which we
confirmed by qRT-PCR (Supplementary Fig. 8d). In contrast, few genes

involved in LD biogenesis and growth, as well as autophagy, were
found among the DEGs (Supplementary Data 1).

To further explore the contribution of lipolytic genes to the arlr
mutant phenotype, we tested whether they genetically interact with
arlr. Four genes including Lsd-1, regucalcin, yip2, and CG5162 affected
the small LD size observed with arlr262 (Fig. 4b). Specifically, arlr262;
ppl>Lsd-1–RNAi flies showed much larger LDs than arlr262 mutants,
similar to ppl>Lsd-1–RNAi flies26,27. In addition, knocking down either
regucalcin, yip2, or CG5162 in arlr262 mutants suppressed the small LD
phenotype to normal size (Fig. 4b–d). The TAG amounts were con-
sistent with the rescue of total lipid levels (Fig. 4d). Lsd-1/PLIN1 is one
of the major LD surface proteins that stimulates lipolysis26,27. Lsd-1-
overexpressing flies showed a mild LD defect, and expressing Lsd-1 in
the arlr mutants did not aggravate the mutant phenotype (Fig. 4c, e),
indicating that the small LD defect in arlrmutants may depend on the
amount of target gene expression and polygenic effects. Regucalcin,
also known as Senescence marker protein-30 (SMP30), is a Ca2+ bind-
ing protein, and in mice hepatocytes SMP30-deficiency show an
accumulation of LDs56. Yip2 (yippee interacting protein 2) is a homolog
of mammalian acetyl-CoA acyltransferase 2 (ACAA2), which catalyzes
mitochondrial fatty acid β-oxidation57. Finally, CG5162 is a homolog of
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Fig. 2 | The EndoU-like domain is required for the rescue of lipid defects. All
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length arlr restored LD defects. f Ectopic expression of arlr that lack the signal
peptide (arlrΔSP-HA) in the fat body showed larger LDs. g Expression of arlrΔSP-HA
restored LD defects in arlr mutants. h, i arlr lacking the EndoU-like domain (arlrN-
HA) failed to restore the lipid defects. j Quantification of the rescue phenotype of
LD size following expression of arlr in arlrmutants. n = 6 biologically independent

animals. Data were analyzed by Mixed-effects analysis Dunnett’s multiple com-
parison test (two-tailed). ns, no significant difference with the ppl >UAS-GFP con-
trol, P =0.68 for Control, P =0.98 for ppl>UAS-arlr-HA, P =0.25 for
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biologically independent experiments. ns P >0.99; **P =0.003 for ppl > UAS-arlrΔSP-
HA, **P =0.003 forarlr262;ppl >UAS-arlrΔSP-HA; ***P <0.001. Datawere analyzedby one-
way ANOVAwith Tukey’smultiple comparison test. Error bars represent SEM. Scale
bars in (a–h) are 20μm.
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human lipase C (LIPC)7,58, which regulates the hydrolysis of triglycer-
ides and phospholipids59. These four genes were upregulated in both
young and old adults (Supplementary Fig. 8d, e). Thus, among the
mRNAs regulated by Arlr are four lipolysis-associated genes involved
in lipid metabolism.

Arlr protein binds to mRNAs encoding lipolytic proteins and
negatively regulates their expression levels
To further investigate whether Arlr could directly repress the target
genes, we performed luciferase reporter assays. Full-length of Arlr was
introduced into the pcDNA3.1 vector to express the Arlr protein. The
above four lipolysis-associated genes were introduced into the pmir-
GLO vector to quantitatively assess the mRNA activity. Strikingly, the
signals of Lsd-1, regucalcin, yip2 and CG5162were all downregulated in
the presence of Arlr (Fig. 5a), indicating that these lipolysis-associated
genes are regulated by Arlr.

To explore whether Arlr directly binds to the mRNAs of lipolysis-
associated genes, we used GFP-tagged Arlr (Arlr-GFP) flies to immu-
noprecipitate (IP) mRNAs using antibodies against GFP for cross-
linking-based RIP-seq. In the IP group, Arlr showed RNA-binding affi-
nity compared to the input group. Peak distribution analysis showed
that 88.9%of the peaksmapped to the coding sequence (CDS) regions,
which is significant higher than the expected value. Peaks mapped to
mostly 5’ untranslated region (UTR), 3’UTR and intronic regions were
lower than the expected value. These data suggest that Arlr pre-
ferentially binds to processed mRNAs (Supplementary Fig. 9a). From
two independent RIP-seq samples, 2667 genes were found

(Supplementary Fig. 9b). Next, we used the Homer software to analyze
the genomic regions corresponding to the peaks and identified the
putative binding motifs in the target sequences containing the clea-
vage sites between AC, AU, UC, and UU50 (Supplementary Fig. 9c).
Interestingly, the most abundant enrichment was observed in genes
belonging to metabolic pathways (Supplementary Fig. 9d, Supple-
mentary Data 2). For these four genes, we used the IGV software to
determine whether they are predicted targets and, interestingly, the
Arlr binding sites were almost all in the CDS regions of the
genes (Fig. 5b).

Next, we designed primers based on the highest peaks in the RIP
group and performed RIP–qRT-PCR to amplify the bound mRNAs. To
prevent indirect binding due to formaldehyde-based cross-linking in
the RIP-seq assay, we used a reagent kit without formaldehyde in this
assay. ThemRNA levels of the four genes immunoprecipitated by anti-
GFP were much higher than in the input immunoprecipitated by anti-
IgG (Fig. 5c). Meanwhile, the negative control PGRP and the positive
control iab-7 showed similar levels between the IgG and RIP group.
Altogether, these results suggest that Arlr binds to mRNAs encoding
lipolytic proteins and negatively regulates their expression levels.

DendoU is a functional paralog of Arlr
Examination of theDrosophila genome reveals the existence of an Arlr
paralog encoded by dendoU (Drosophila endoribonuclease U-specific).
Both genes have the highly conserved EndoU-like domain but differ at
the N terminus as DendoU does not contain a signal peptide and the
proline-rich and glycine-rich domains (Supplementary Fig. 3a)50. Since
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as control. c Quantification of the size of LDs. n = 6 biologically independent ani-
mals. ns P =0.26 for Feed, P =0.14 for HSD, P =0.08 for HFD; ***P <0.001.

d Quantification of the relative TAG amounts. n = 3 biologically independent
experiments. ns P =0.31 for Feed, P =0.12 for HSD, and P =0.59 for HFD;
***P <0.001. e The lifespan of arlr mutants was restored by high nutrition diet in
females. Dashed lines indicate the median lifespan. n = 1 biologically independent
experiment. ***P <0.001; *P =0.01. Statistical data were analyzed by independent
two-sample t tests (two-tailed) in (c) and (d), and by Log-rank (Mantel-Cox) test in
(e). Error bars represent SEM. Scale bars in (a) and (b) are 20μm.
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truncated Arlr without the N-terminal signal peptide could restore the
LD defects seen in arlr mutants, we tested whether dendoU could
compensate for loss of arlr function. Interestingly, dendoU expression
restored the LD defects in arlr mutants at 5 weeks (Fig. 6d, h, j) indi-
cating that DendoU is a functional paralog of Arlr.

As dendoU could rescue arlr mutants, we examined the pheno-
types associated with either loss or overexpression of dendoU. In the
fat body of third instar larvae with knockdown of dendoU
(ppl>dendoU–RNAi), LDs were normal in size and their number was
slightlydecreased (Supplementary Fig. 10b, c). In adults, the numberof
LDs was greatly reduced and did not show age-dependent changes
(Fig. 6e, i, Supplementary Fig. 10e, h). Further, consistent with the
reduced number of LDs, the TAG amountwas reduced (Fig. 6j). Finally,
ectopic expression of dendoU in the fat body (ppl>dendoU-HA, Fig. 6c,
h, j) resulted in extra-large LDs, similar to those of ppl>arlrΔSP-HA flies
(Fig. 2e, i, j) but not of ppl>arlr-HA flies (Fig. 2c, i, j), indicating that
overexpression of the non-secreted EndoU proteins in the fat body is
sufficient to increase the size of LDs.

To further test whether arlr and dendoU are functional paralogs,
we expressed arlr in dendoU–RNAi flies. Arlr could rescue the LD
defects associated with loss of dendoU (Fig. 6f, Supplementary
Fig. 10f), suggesting that the two paralogs have an overlapping func-
tion. Thus, we tested whether loss of both arlr and dendoU would
exhibit a stronger phenotype than loss of a single gene. Reducing arlr
in flies with knockdown of dendoU did not increase the severity of loss
of dendoU in young adults (Supplementary Fig. 6g). However, smaller

and fewer LDs was observed in aging flies (Fig. 6g–j), indicating that
Arlr and DendoU have additive effects to regulate total lipid levels.

Human ENDOU can functionally substitute for Arlr
To determine whether the function of human ENDOU in lipid
metabolism is conserved, we generated transgenic flies expres-
sing full-length human ENDOU (UAS-ENDOU-HA) (Supplementary
Fig. 3a) and expressed human ENDOU in the fly fat body. Human
ENDOU also contains a signal peptide, followed by the EndoU
domain60. Strikingly, when expressing ENDOU in the arlr262

mutant background, LD sizes and TAG levels were restored
(Fig. 7d–f), suggesting that the function of human ENDOU in lipid
metabolism is evolutionarily conserved. On the other hand,
overexpression of ENDOU (ppl > UAS-ENDOU-HA) had no effects
on LDs, including LD size and TAG levels (Fig. 7c, e, f).

Then, we examined whether ENDOU expression can revert the
upregulation of the four proposed target genes in arlr mutants.
Expressing human ENDOU showed decreased expression of the four
genes. In the arlr mutant background, Lsd-1, CG5162, yip2, and reg-
ucalcin were all significantly reduced by expressing human ENDOU
(CG5162 and yip2 as examples in Fig. 7g), suggesting that the EndoU
family proteins are conserved in regulating the target RNAs.

Discussion
In this study, we report that high expression of the endonuclease Arlr
during aging is essential for lipid accumulation and that in the absence
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of Arlr activity lipid storage in LDs in adult adipose tissues is affected
due to an increase in lipolysis. We demonstrate that Arlr binds to the
mRNAs of a number of lipolytic genes and negatively regulates their
expression and that the endonuclease domain of Arlr is necessary to
rescue arlr mutants. Altogether, we propose that the endor-
ibonuclease Arlr is required to maintain lipid homeostasis by down-
regulating lipolytic genes.

Previous studies have implicated the EndoUprotein family in lipid
metabolismby affectingmRNA levels. Thenematodehomolog ENDU-2
protects germline immortality via downregulationof genes involved in
lipid metabolism. However, in contrast to our findings, the lipid con-
tent is increased in ENDU-2mutants61. As the specific targets of ENDU-2
have not yet been characterized, further studies will be needed to
reconcile these observations. In addition, overexpression of the zeb-
rafish or human ENDOU increases human CHOP mRNA translation via
cleavage of the upstream open reading frames (uORFs), which nega-
tively affects translation of C/EBP homologous protein (CHOP)62. As a
transcription factor, CHOP is upregulated by lipid accumulation-
induced ER stress and interacts with FoxO to promote hepatic lipo-
genesis through activation of peroxisome proliferator-activated
receptor γ (PPARγ) expression63. In addition, lipids are reduced in
CHOP knockdown cell lines64. However, severe impairment of ER
activates CHOP to induce lipoapoptosis65,66, thus inhibiting adipo-
genesis, probably through specific target genes67. Despite these stu-
dies, the role of EndoU proteins in lipid metabolism has remained
largely unknown.

EndoU proteins, which contain RNA binding domains, cleave
single-stranded RNA harboring U-rich sequences47–52. We found that a
number of lipolytic genes are negatively regulated by Arlr via its
binding to target mRNAs and that the EndoU domain is required for
Arlr activity. Strikingly, knockdown of four lipolytic genes, Lsd-1,
CG5162, yip2, and regucalcin, rescues the LD defects in arlr mutants
(Fig. 4). Lsd-1 proteins form a scaffold on the surface of LDs and recruit
lipases such as HSL to stimulate lipolysis24. Lsd-1 is exclusively
expressed in fat bodies and Lsd-1 mutants display giant LDs both in
larvae and adult flies and exhibit adult-onset obesity26,27. In contrast,
overexpression of Lsd-1 in the fat body results in small LDs (Fig. 4)27.
Interestingly, AKH/Glucagon signaling phosphorylates Lsd-1 to stimu-
late lipolysis in adult flies26,68,69. As the AKH receptor is normally
expressed in arlrmutants (Supplementary Data 1), it will be interesting
to test whether Arlr antagonizes AKH. In addition, as cytoplasmic
lipase-driven lipolysis acts on large LDs22, only large-sized medial LDs
(mLDs) are regulated by Arlr (Fig. 1), but not small peripheral LDs
(pLDs) (Supplementary Fig. 5). This is consistent with the mechanism
that mLDs rely on Lsd-1, whereas pLDs are regulated by Lsd-2 and the
LD-PM (plasma membrane) contact protein Snazarus70. Among the
other targets, CG5162 mRNA levels have been previously reported to
increase in response to acute exercise which leads to a significant
reduction in LD size58. This is consistent with its role in lipolysis.
Interestingly, two other major lipases, HSL and Bmm, are not tran-
scriptionally regulated by Arlr (Supplementary Data 1). Further char-
acterization of the epistatic relationships between Bmm, HSL and Arlr
will be of interest. Another target,Yip2, is a fasting-inducible gene71 that
acts in the catalysis of fatty acid oxidation57. Finally, Regucalcin/SMP30
transcriptionally represses the adipokines leptin and adiponectin72, but
how Regucalcin/SMP30 regulates lipid metabolism is not clear. Alto-
gether, we speculate that EndoU family proteins influence the synth-
esis of lipolytic proteins by releasing mRNAs from the ER membrane.
When Arlr is lost, the function of mRNA degradation is impaired,
resulting in accelerated lipolysis of largemedial LDs, ultimately leading
to fast lipid consumption in aging flies (Fig. 7h).

We find that the two fly paralogs of EndoU, Arlr and DendoU,
share similar functions during lipid metabolism. Mutations of either
gene lead to reduced fat content. However, while the number of LDs in
dendoU-knockdownflies is reduced, small LD size is themajor defect in
arlr mutants in aging flies (Figs. 1, 4). In vitro RNA processing assays
indicate that DendoU preferentially cleaves at oligo(U), whereas Arlr
preferentially cleaves between A and C nucleotides and has less pre-
ference for oligo(U)50. Moreover, although some residues that are
essential for RNA binding and RNA cleavage are conserved in both Arlr
and DendoU, others located at the N terminal variable region that are
essential for RNA binding are less conserved50,52,73, suggesting that
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DendoU and Arlr have both common and distinct molecular targets.
Despite these differences, expression of either gene is sufficient to
rescue the LD defects in each mutant (Figs. 2, 6). Further, a short
period of starvation induces moderate expression of arlr and down-
regulation of dendoU in fat bodies74, indicating a compensatory reg-
ulation of these two EndoU genes to keep the balance of lipid
metabolism. In addition, like dendoU, expressing human ENDOU can
compensate for loss of arlr (Fig. 7). Taken together, our findings reveal
a conserved role of EndoU family proteins in lipidmetabolism and that
these proteins may function through distinct targets but have com-
plementary roles in lipid accumulation.

Interestingly, EndoU proteins in most species contain a signal
peptide at the N terminus (Supplementary Fig. 2)60 and can be
secreted55,61. Previously, we reported that knockdown of arlr in the fat
body was associated with poor climbing ability consistent with defects
in muscle activity and Ubiquitin protein aggregates in muscles55. In
addition, Arlr could be detected at the surface of thoracic muscles
suggesting that fat body derived Arlr directly affect muscle activity.
Further, in C. elegans, secreted EndoU from the soma has been found
to protect germline immortality61. Intriguingly, overexpressing den-
doU, which has no signal peptide sequence, leads to enlarged LDs,
similar to arlrΔSP (signal peptide-deprived Arlr). However, over-
expressing full-length arlr or human ENDOU show normal LDs (Figs. 2,
7), which is likely due to its secretory capacity. Further studies will be
required to characterize the exact role of secreted EndoU proteins.

In aging flies, the highest DEGs are in the fat body and several
adipose cell types, highlighting that major changes occur in fat cells
during aging54. arlr is highly expressed during adult stages and
snRNAseq analysis of the FCA and AFCA data sets shows that the
expression of Arlr is increased in aging fat cells (Fig. 1, Supplementary
Fig. 1). Consistent with the high levels of Arlr, expression of the target
senescencemarker gene regucalcin/SMP30decreaseswith age in rats75,
indicating that Arlr could be amarker of aging. Arlr attenuates lipolytic
gene expression, resulting in lipid homeostasis in aging flies (Figs. 4, 5).
Aging-associated reduction of lipolysis is mediated by inhibition of

lipolytic pathways, such as the decrease of HSL and ATGLwith age33,34.
Further, promoting lipolysis by genetic manipulations and dietary
restriction (DR) is considered to be associated with lifespan
extension76. Upon DR, flies shift their metabolism toward increasing
fatty-acid synthesis and breakdown, and disruption of lipid synthesis
or oxidation inhibits lifespan extension upon DR, indicating that lipid
homeostasis is essential for lifespan extension42. In arlr mutants, lipid
consumption is severely accelerated, indicating a disruption of lipid
homeostasis, thus lifespan is reduced under standard food and star-
vation conditions (Figs. 1, 3). Excessive nutrition replenishes the lipid
content and rescues the short lifespan of arlr mutants (Fig. 3). Thus,
Arlr is essential for longevity by promoting the balance of lipid meta-
bolism via lipolytic regulation.

EndoU family of endonucleases have been implicated in many
processes, including as a tumor biomarker in human beings77–79,
immune response in mice51, ER morphology in Xenopus80, neurode-
generation in Drosophila50, cold tolerance, nucleotide metabolism,
lifespan and germline immortality in C. elegans61,81,82, and viral repli-
cation and pathogenicity83–85. Our findings reveal another role of
EndoU family proteins in lipolysis and providemechanistic insights for
such a specific function. Understanding of EndoU in lipid metabolism
may provide insights for the treatment of lipid metabolism-associated
diseases and promotes healthy aging.

Methods
Drosophila stocks and rearing conditions
Flies were reared at 25 °C with a 12:12 h light/dark cycle on standard
food unless otherwise mentioned. Ingredients of various foods are
included in Supplementary Table 1. For the starvation, high sugar, and
high-fat diet assays, flies were raised on standard food and then
transferred to the relevant diet for 24 h before dissection of the fat
body and TAG measurements. For lifespan tests, flies were raised on
standard, poor nutrition, or high nutrition food throughout the adult
stage. P{nos-Cas9.R}attP2 is the background stock (control) of deletion
mutants (Bloomington Drosophila Stock Center/BDSC 78782). For
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targeted knockdown, overexpression and rescue experiments, the fat
body-specific Gal4 drivers ppl-Gal4 (BDSC 58768) and LPP-Gal455 were
used. UAS-GFP (BDSC 4775, 4776) driven by ppl-Gal4 was used as
control. arlr–RNAi61997 (BDSC 61997) and arlr–RNAi14874 (Vienna Droso-
phila Resource Center/VDRC v14874) were used to knockdown arlr.
dendoU–RNAi (VDRC v9916) was used to knockdown dendoU. Lsd-
1–RNAi, regucalcin–RNAi, yip2–RNAi, and CG5162–RNAi (TsingHua Fly
Center/THFC TH04820.N, THU1799, THU3344, and TH03231.N,
respectively) were used for the genetic interaction tests with arlr
mutants. UAS-KDEL-mCherry, used to label the ER, was a gift from
Yixian Cui (Wuhan University, Wuhan, China).

CRISPR/Cas9 mediated generation of arlr mutants and trans-
genic strains
The arlr deletion mutants and UAS transgenic flies were established at
the Drosophila resources and technology platform, Core Technology

Facility of Center for Excellence in Molecular Cell Science, Chinese
Academy of Sciences. sgRNAs targeting arlr for CRISPR/Cas9-midiated
targeted mutagenesis were designed with the tools available at https://
zlab.bio/guide-design-resources. Two sgRNAs (5’-ggacgcagtgatggc-
cacgc-3’ and 5’-gccagtgaatactgtgtttg-3’) were injected into P{nos-Cas9.R}
attP2 embryos. Putative transformants were crossed to the balancer
strain (yw; Sp/CyO; MKRS/TM2) for 7 days. Then, DNA was extracted for
PCRdetection. Primersflanking the predicted lesionswere designed for
PCR. Two individual mutants were identified, arlr262 (deletion of
1261–1523 bp in the coding sequence, homozygous viable) and arlr364

(deletion of 1255–1619 bp in the coding sequence, homozygous viable).
UAS transgenic lines, including UAS-arlr-HA (encoding the full

length 592 a.a.), UAS-arlrΔSP-HA (encoding a truncated protein lack of
the N-terminal 75 a.a. including the signal peptide), and UAS-arlrN-HA
(encoding a truncated protein of 1–392 a.a.) were cloned by PCR. Pri-
mers are listed in SupplementaryTable 2. ForUAS-ENDOU-HA andUAS-
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dendoU-HA, the coding sequences of human ENDOU and Drosophila
dendoU were de novo synthesized by Tsingke Biotechnology (Beijing,
China). Sequences were inserted into the pUASTattB vector through
XbaI and EcoRI sites. All plasmids were injected intoM{vas-int.Dm}ZH-
2A w*; P{CaryP}attP2 (BDSC #68A4) embryos. Potential transformants
(red eye) were crossed with the balancer strain (yw; Sp/CyO; MKRS/
TM2) for 7 days. Subsequently, red-eye flies were picked out for DNA
extraction and PCR detection.

Thearlr-GFP transgenic strainwas established byQidong Fungene
Biotechnology (Jiangsu, China). sgRNAs (5’-cctcattggcagcgcctatccgg-3’
and 5’-agcgcctatccggagatttgagg-3’) were designed by Chopchop
(http://chopchop.cbu.uib.no/). Cas9 mRNA was transcribed using the
template of a linearized plasmid containing the Cas9 cDNA (Addgene
plasmid 42251). Homology 5’ and 3’ arms were amplified from the
genomic DNA of arlr and linked to the backbone of the donor vector
pBluescirpt SK vector (pBS) whichwe named “pBS-Arlr-arm”. pBS-Arlr-
arm was linearized by PCR and linked to the GFP-loxp-3p3-RFP-loxp
cassette (loxp-3p3-RFP-loxp was a marker with red eyes) to form the
final donor construct “pBS-Arlr-GFP-LRL”. A formula of 30 μL con-
taining 7.5 μg sgRNA, 15 μg Cas9 mRNA, and 9 μg donor plasmid in
DEPCwaterwas injected intow1118 embryos. P0progenieswerecrossed
with flies carrying the FM7a balancer. F1 flies were screened for RFP
expression in the eyes. PCR was performed to validate the F1 flies. F2
flies from F1-positive tubes were crossed with Cre stocks (yw,cre) to
remove the RFP marker between the two loxP sites. Flies without RFP
were balanced with FM7a and kept for further study. All primers for
PCR detection are listed in Supplementary Table 2.

Immunostaining and confocal microscopy
Fat bodies were dissected in ice-cold PBS and fixed in 4% paraf-
ormaldehyde at room temperature with gentle shaking for 15min and
washed in PBS for 15min. Subsequently, the tissues were incubated
with BODIPY493/503 (1:1000, D3922, Invitrogen, Eugene, USA) or Nile
Red (1:1000, 72485, Sigma, St. Louis, USA) for 30min at room tem-
perature with gentle shaking in the dark and then washed in PBS for
30min. Samplesweremounted inVectashield containingDAPI (Vector
Laboratories, Burlingame, USA). For rabbit anti-GFP (A11122, 1:2000,
Invitrogen) and HA-Tag (C29F4) rabbit mAb (1:8000, #3724, Cell Sig-
naling,Danvers, USA) staining, tissueswere incubatedwith theprimary
antibody overnight at 4 °C, washed in PBS for 30min, followed by the
secondary antibody goat anti-rabbit Alexa 647 (A21245, 1:200, Ther-
moFisher, Eugene, USA) or goat anti-rabbit Alexa 488 (A21206, 1:200,
ThermoFisher) for 1 h, washed in PBS for 30min and finallymounted in
Vectashield containing DAPI. Confocal images were acquired using
Zeiss LSM 800 confocal microscope with a 63X oil objective.
Sequential scanning was performed every 0.2μm for the reconstruc-
tion of the x-z and y-z sections. For immunostaining and the following
experiments, including dietary tests, triglyceride, glucose and treha-
lose measurements, and lifespan, virgin females and males were
measured separately.

Triglyceride, glucose, and trehalose measurements
For triglyceride measurements, ten adults were homogenized in 500
μL PBS containing 0.2% Triton X, heated at 70 °C for 5min, and cen-
trifuged at 18,400 × g for 10min. Ten microliters of supernatant was
used to measure the TAG level by Serum Triglyceride Determination
Kits (TR0100-1KT, Sigma). Protein amounts were measured using
Bradford Reagent (P0006, Beyotime, Shanghai, China). TAG level was
normalized to the protein amount.

For glucose measurements, ten adult flies were homogenized in
200 μL distilled water after being weighed and centrifuged at room
temperature at 8000× g for 10min. The supernatant was used to
measure the glucose level using Glucose Detection Kits (BC2505,
Solarbio, Beijing, China). For trehalose measurements, ten adult flies
were weighed and homogenized in 200 μL extracting solution. After

standing at room temperature for 45min, extractions were cen-
trifuged at room temperature at 8000× g for 10min. The supernatant
was used tomeasure the trehalose level using TrehaloseDetection Kits
(BC0335, Solarbio). The glucose and trehalose levels were normalized
to the weight. Each genotype was measured three times.

Lifespan measurements
After eclosion, flies were reared in 4–8 vials (30 adults in each vial) at
25 °C and transferred into new vials every three days. The number of
survival individualswas recorded at each transfer. The survival ratewas
calculated by the percentage of total surviving flies. Surviving curves
were generated usingGraphPadPrism9.5. Lifespan test was repeatable
for each genotype and one of the two repeats was shown in the figures.

Transcriptome sequencing (RNA-seq)
Total RNA of control and arlr262mutant flies including equal number of
both males and females (20 adults in total) were extracted from the
abdomen of 5-week adults discarding the intestines and ovaries using
TRIzolTM Reagent (15596026, Invitrogen). Transcript libraries were
constructed via Illumina novaseq 6000 (Illumina). Each treatment had
3 biological replicates. DESeq was used to analyze the differentially
expressed genes (DEGs). Fold change ≥2 and false discover rate
(FDR) < 0.01 were considered as significantly changed expression.

RNA immunoprecipitation sequencing (RIP-seq)
Abdomens from 20 arlr-GFP 5-week-old adult flies including equal
number ofmales and femalesweredissected in ice-cold PBS, intestines
and ovaries were discarded, and samples were collected in 1mL ice-
cold PBS. Tissues were centrifuged at 2000× g for 2min at 4 °C.
Sediments containingRNAs andArlr-GFPproteinswere cross-linkedby
180 μL 37% formaldehyde at room temperature and gently shaken for
15min. To stop cross-linking, 20 μL glycine with a final concentration
of 1.25M was mixed using a vortex for 5min. After centrifugation at
2000 × g for 2min at 4 °C, the supernatant was discarded. Sediments
were washed in 1mL buffer A1 (60mM KCl, 15mMNaCl, 4mMMgCl2,
15mM HEPES, 0.5% Triton X-100, 0.5mM DTT, 10mM sodium buty-
rate, 1:100 protease inhibitor, 100U/mL RNase inhibitor) before cen-
trifugation at 2000× g for 2min at 4 °C and 1mL lysis buffer 1 (140mM
NaCl, 15mM HEPES, 1mM EDTA, 0.5mM EGTA, 1% Triton X-100,
0.5mM DTT, 0.1% sodium deoxycholate, 10mM sodium butyrate,
1:100 protease inhibitor, 100U/mL RNase inhibitor) before cen-
trifugation at 2000× g for 2min at 4 °C. Tissues were resuspended in
300 μL 1% SDS lysis buffer 2 (0.5% N-lauroylasarcosine in fresh lysis
buffer 1) andplacedon ice for 1 h. Lysateswere sonicated for 7.5minon
ice (using a setting of 30 s on–60 s off, 5 cycles, moderate intensity) to
shear the chromatin into ~0.5 kb fragments. Sonicated lysates were
centrifuged at 12,000× g for 2min at 4 °C, then the supernatant was
retained in a new enzyme-free tubes.

Fifty μL of the above solution was stored at −80 °C as an input
control for later use. The remaining 250 μL solution was added with 2
μg anti-GFP antibody (A11122, Invitrogen) as the IP group, remaining at
4 °C for 4 hwith gentle shake. The solutionwaspre-washedusing 30μL
protein A beads (10001D, Invitrogen) at 4 °C overnight, and then
washed by lysis buffer wash (0.05% SDS in fresh lysis buffer 1, 1:100
protease inhibitor, 100U/mL RNase inhibitor) for 4 times, 5min each,
followed by TE (0.1mMEDTA, 10mMTris HCl pH = 8.0, 1:100 protease
inhibitor, 100U/mL RNase inhibitor) for 2 times. The IP sample was
incubated in 100 μL elution buffer 1 (10mM EDTA, 50mMTris-HCl pH
= 8.0, 1% SDS, 1:100 protease inhibitor, 100U/mL RNase inhibitor) at
130 rpm for 15min at 65 °C. The incubation of supernatant was then
repeated in 150μL elution buffer 2 (0.1mMEDTA, 10mMTris-HCl pH=
8.0, 0.67% SDS, 1:100 protease inhibitor, 100U/mL RNase inhibitor).
Next, both input and IP group samples were treated with 20 μg pro-
tease K at 130 rpm for 4 h at 65 °C for the reversal of cross-linking.
Solutions with 1/10 volume of 3M NaAC (with 0.3M final
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concentration, pH = 5.2), 2.5 volumeof pre-cold ethanol, 1 μL glycogen
and 3 μL RNase inhibitor were used at −80 °C overnight for RNA pur-
ification before centrifugation at 12,000× g for 30min at 4 °C. The
precipitate was washed with pre-cold 75% ethanol twice before being
dissolved in 20μL enzyme-free water. The Ribo-off rRNADepletion Kit
(N406-01/02, Vazyme, Nanjing, China) was used before RIP-seq to
exclude the interference of ribosomal RNA. RIP-seq was performed by
Novogene (Beijing, China) using an Illumina Novaseq 6000 platform.
There were 2 biological replicates for the input and IP groups. For
genomic loci analysis, the bam raw document was analyzed using the
Integrative Genomics Viewer (IGV) software (http://software.
broadinstitute.org/software/igv/, California, USA). Potential motifs in
the target sequences were predicted using Homer software (V4.11,
University of California at San Diego, http://homer.ucsd.edu/homer/).

Quantitative real-time PCR (qRT-PCR)
Following extraction of total RNAs, cDNA was synthesized using Pri-
meScriptTMReagent Kit (RR047A, TaKaRa, Beijing, China) and qRT-PCR
was performedusing PerfectStartTMGreen qRT-PCRSuperMix (+Dye II)
(TransGen, Beijing, China, #AQ132-24) using the QuantStudio 6 Flex
platform. To prevent cross-linking and verify that the target genes
directly bind to Arlr, we performed RIP–qRT-PCR analysis using a
reagent kit without formaldehyde (RNA Immunoprecipitation [RIP] Kit,
Catalog Bes5101, BersinBio, Guangzhou, China). These qRT-PCR data
were normalized to the actin control. Other data were normalized to the
internal control Rpl32. Primers are listed in Supplementary Table 2. Each
genotype had three biological replicates and three technical replicates.

Luciferase reporter assay
Full-length cDNAs of Lsd-1, regucalcin, yip2, and CG5162 were cloned
into the pmirGLO dual-luciferase miRNA target expression vector
(E1330, Promega, Beijing, China). The full-length cDNA of arlr was
cloned into a pcDNA3.1 vector (V790-20, Invitrogen). HEK293T cells
(CRL-3216, ATCC, USA) were cultured in DMEM medium (11965-092,
Gibco, New York, USA) with 10% fetal bovine serum (11011-8611, Bio-
base, Jinan, China) and 1% antibiotic (15140-122, Gibco), andmaintained
in incubatorswith 5% CO2 at 37 °C. Cells were seeded in a 24-well plate.
Transfection was performed at 70–90% confluence with Lipo8000
transfection reagent (C0533, Beyotime). Luciferase assays were per-
formed 2 days after transfection using Dual-Lumi II luciferase reporter
gene assay kit (RG089S, Beyotime). Results were tested by SpectraMax
i3x (TECAN, Switzerland).

Western blot
Whole adults were homogenized in ice-cold RIPA buffer (P0013B,
Beyotime) supplemented with 100 μM protease inhibitors PMSF
(ST506, Beyotime). Total protein concentrations weremeasured using
the BCA assay Kit (P0012S, Beyotime). Protein samples were diluted to
equal concentrations using lysis buffer and loaded into SDS-PAGE gels
for Western blot analysis. The primary antibodies were HA-Tag
(C29F4) rabbit mAb (1:8000, #3724, Cell Signaling) and mouse
monoclonal anti-α-tubulin (1:50,000, Sigma, T6074). The secondary
antibodies were goat anti-rabbit IgG H&L (HRP) (1:20,000, ab205718,
Abcam, Cambridge, UK) and goat anti-mouse IgG (H+ L), HRP
(1:20,000, BE0102, Easybio, Beijing, China).

Statistical analysis
Images were processed with Photoshop 2021. To quantify LD size,
Image J V1.53 was used to measure the area of LDs on the same focal
plane around the nuclei. For each genotype, a total of three adipocytes
weremeasured in each fly sample and six flies were used. Lifespandata
were subjected to survival analysis using a log-rank Mantel-Cox test
and presented as survival curves. Statistical charts were produced by
GraphPad Prism 9.5. Significance between two genotypes was deter-
mined by two-tailed Student’s t test, whereas multiple comparisons

between genotypes were determined by one-way ANOVA with Tukey’s
or Mixed-effects analysis Dunnett’s multiple comparison test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data generated in this study have been deposited in the
Genbank database under accession code PRJNA943130. The ChIP-seq
data generated in this study have been deposited in the Genbank
databaseunder accession code PRJNA943378. Gene expression images
are available at the Aging Fly Cell Atlas platform (https://hongjielilab.
shinyapps.io/AFCA/). Source data are provided with this paper.
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