Publications

2017
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet. 2017;18 (1) :24-40. Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
2016_Nat Rev Gene_Housden.pdf
2016
Perrimon N, Bonini NM, Dhillon P. Fruit flies on the front line: the translational impact of Drosophila. Dis Model Mech. 2016;9 (3) :229-31. Abstract

Drosophila melanogaster has been adopted as one of the most-used model systems since it was first introduced by Thomas Morgan for the study of heredity in the early 20th century. Its experimental tractability and similarity of its biological pathways to those of humans have placed the model at the forefront of research into human development and disease. With the ongoing accumulation of genetic tools and assays, the fly community has at its fingertips the resources to generate diverse Drosophila disease models for the study of genes and pathways involved in a wide range of disorders. In recent years, the fly has also been used successfully for drug screening. In this Editorial, we introduce a Special Collection of reviews, interviews and original research articles that highlight some of the many ways that Drosophila has made, and continues to make, an impact on basic biological insights and translational science.

2016_Dis Mod Mech_Perrimon.pdf
Fagegaltier D, Falciatori I, Czech B, Castel S, Perrimon N, Simcox A, et al. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway. Genes Dev. 2016;30 (14) :1623-35. Abstract

Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer.

2016_Genes Dev_Fagegaltier.pdf Supplemental Files.zip
Droujinine IA, Perrimon N. Interorgan Communication Pathways in Physiology: Focus on Drosophila. Annu Rev Genet. 2016;Abstract

Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease. Expected final online publication date for the Annual Review of Genetics Volume 50 is November 23, 2016. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2016_Annu Rev Genet_Drouijinine.pdf
Housden BE, Perrimon N. Cas9-Mediated Genome Engineering in Drosophila melanogaster. Cold Spring Harb Protoc. 2016;2016 (9) :pdb.top086843. Abstract

The recent development of the CRISPR-Cas9 system for genome engineering has revolutionized our ability to modify the endogenous DNA sequence of many organisms, including Drosophila This system allows alteration of DNA sequences in situ with single base-pair precision and is now being used for a wide variety of applications. To use the CRISPR system effectively, various design parameters must be considered, including single guide RNA target site selection and identification of successful editing events. Here, we review recent advances in CRISPR methodology in Drosophila and introduce protocols for some of the more difficult aspects of CRISPR implementation: designing and generating CRISPR reagents and detecting indel mutations by high-resolution melt analysis.

2016_CSHP_Housden_Cas9.pdf
Housden BE, Perrimon N. Design and Generation of Donor Constructs for Genome Engineering in Drosophila. Cold Spring Harb Protoc. 2016;2016 (9) :pdb.prot090787. Abstract

The generation of precise alterations to the genome using CRISPR requires the combination of CRISPR and a donor construct containing homology to the target site. A double-strand break is first generated at the target locus using CRISPR. It is then repaired using the endogenous homologous recombination (HR) pathway. When a donor construct is provided, it can be used as a template for HR repair and can therefore be exploited to introduce alterations in the genomic sequence with single base-pair precision. Here we describe a protocol for the generation of donor constructs using Golden Gate assembly and discuss some key considerations for donor construct design for use in Drosophila.

2016_CSHP_Housden_DonorConstructs.pdf
Housden BE, Hu Y, Perrimon N. Design and Generation of Drosophila Single Guide RNA Expression Constructs. Cold Spring Harb Protoc. 2016;2016 (9) :pdb.prot090779. Abstract

The recent advances in CRISPR-based genome engineering have enabled a plethora of new experiments to study a wide range of biological questions. The major attraction of this system over previous methods is its high efficiency and simplicity of use. For example, whereas previous genome engineering technologies required the generation of new proteins to target each new locus, CRISPR requires only the expression of a different single guide RNA (sgRNA). This sgRNA binds to the Cas9 endonuclease protein and directs the generation of a double-strand break to a highly specific genomic site determined by the sgRNA sequence. In addition, the relative simplicity of the Drosophila genome is a particular advantage, as possible sgRNA off-target sites can easily be avoided. Here, we provide a step-by-step protocol for designing sgRNA target sites using the Drosophila RNAi Screening Center (DRSC) Find CRISPRs tool (version 2). We also describe the generation of sgRNA expression plasmids for the use in cultured Drosophila cells or in vivo. Finally, we discuss specific design requirements for various genome engineering applications.

2016_CSHP_Housden_SingleGuideRNA.pdf
Housden BE, Perrimon N. Detection of Indel Mutations in Drosophila by High-Resolution Melt Analysis (HRMA). Cold Spring Harb Protoc. 2016;2016 (9) :pdb.prot090795. Abstract

Although CRISPR technology allows specific genome alterations to be created with relative ease, detection of these events can be problematic. For example, CRISPR-induced double-strand breaks are often repaired imprecisely to generate unpredictable short indel mutations. Detection of these events requires the use of molecular screening techniques such as endonuclease assays, restriction profiling, or high-resolution melt analysis (HRMA). Here, we provide detailed protocols for HRMA-based mutation screening in Drosophila and analysis of the resulting data using the online tool HRMAnalyzer.

2016_CSHP_Housden_HRMA.pdf
Sahin M, Henske EP, Manning BD, Ess KC, Bissler JJ, Klann E, et al. Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatr Neurol. 2016;60 :1-12. Abstract

On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis (http://www.ninds.nih.gov/about_ninds/plans/tscler_research_plan.htm). In addition to the National Institute of Neurological Disorders and Stroke and Tuberous Sclerosis Alliance, participants in the strategic planning effort and workshop included representatives from six other Institutes of the National Institutes of Health, the Department of Defense Tuberous Sclerosis Complex Research Program, and a broad cross-section of basic scientists and clinicians with expertise in tuberous sclerosis complex along with representatives from the pharmaceutical industry. Here we summarize the outcomes from the extensive premeeting deliberations and final workshop recommendations, including (1) progress in the field since publication of the initial 2003 research plan for tuberous sclerosis complex, (2) the key gaps, needs, and challenges that hinder progress in tuberous sclerosis complex research, and (3) a new set of research priorities along with specific recommendations for addressing the major challenges in each priority area. The new research plan is organized around both short-term and long-term goals with the expectation that progress toward specific objectives can be achieved within a five to ten year time frame.

2016_Pediatr Neurol_Sahin.pdf Appendices.zip
Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, et al. Seipin is required for converting nascent to mature lipid droplets. Elife. 2016;5. Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

2016_eLife_Wang.pdf
Housden BE, Perrimon N. Comparing CRISPR and RNAi-based screening technologies. Nat Biotechnol. 2016;34 (6) :621-3. 2016_Nat Biotech_Housden.pdf
Petsakou A, Perrimon N. "ISN't Thirst Sweet?" Says the Fly. Cell. 2016;166 (4) :796-7. Abstract

How food and water intake is reciprocally regulated to maintain homeostasis is unclear. New findings by Jourjine and colleagues identify four neurons in the Drosophila brain that receive both water and sugar abundance signals and oppositely regulate hunger and thirst.

2016_Cell_Petsakou.pdf
Vinayagam A, Kulkarni MM, Sopko R, Sun X, Hu Y, Nand A, et al. An integrative analysis of the InR/PI3K/Akt network identifies the dynamic response to Insulin signaling. Cell Reports. 2016;16 (11) :3062–3074. Abstract

SUMMARY

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and metabolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network surrounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phosphoproteomics, we demonstrate that 10% of interacting proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by identifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network.

2016_Cell Rep_Vinayagam.pdf Supplement.pdf
Ammeux N, Housden BE, Georgiadis A, Hu Y, Perrimon N. Mapping signaling pathway cross-talk in Drosophila cells. Proc Natl Acad Sci U S A. 2016;Abstract

During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell-cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly.

2016_PNAS_Ammeux.pdf Supplement.pdf Supplemental Datasets.zip
Parkhitko AA, Binari R, Zhang N, Asara JM, Demontis F, Perrimon N. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. Genes Dev. 2016;30 (12) :1409-22. Abstract

Aging is a risk factor for many human pathologies and is characterized by extensive metabolic changes. Using targeted high-throughput metabolite profiling in Drosophila melanogaster at different ages, we demonstrate that methionine metabolism changes strikingly during aging. Methionine generates the methyl donor S-adenosyl-methionine (SAM), which is converted via methylation to S-adenosyl-homocysteine (SAH), which accumulates during aging. A targeted RNAi screen against methionine pathway components revealed significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy (S-adenosyl-L-homocysteine hydrolase [SAHH[), CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Importantly, tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Furthermore, metabolomic analysis of dAhcyL1-deficient flies revealed its effect on age-dependent metabolic reprogramming and H3K4 methylation. Altogether, reprogramming of methionine metabolism in young flies and suppression of age-dependent SAH accumulation lead to increased life span. These studies highlight the role of noncanonical Ahcy enzymes as determinants of healthy aging and longevity.

2016_Genes Dev_Parkhitko.pdf Supplement.pdf
Doupé DP, Perrimon N. Toward a Systems Understanding of Signaling Pathway Function. Curr Top Dev Biol. 2016;117 :221-36. Abstract

A small number of developmental signaling pathways are used repeatedly throughout development in many different contexts. How these pathways interact with each other and the specific cell context to generate a wide range of appropriate responses remains an important question. The application of genomic and proteomic approaches and imaging at high spatiotemporal resolution are providing answers to this question and revealing new levels of complexity. Here, we discuss pathways as complex networks and examples of how signaling outcomes can be influenced by the temporal nature of the signal, its spatial regulation, and the cell context.

2016_Essays Dev Bio_Doupe.pdf
Sopko R, Perrimon N. Systematic methods to interrogate genetic perturbations and map phosphorylation-dependent signaling. In: Encyclopedia of Cell Biology. Elsevier Inc.; 2016. p. 227-233. 2015_ECB_Sopko-Perrimon.pdf
Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, et al. Comparison of Cas9 activators in multiple species. Nat Methods. 2016;13 (7) :563-7. Abstract

Several programmable transcription factors exist based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems, and we assess the role of cooperativity in maximizing gene expression.

2016_Nat Methods_Chavez.pdf Supplement.pdf
Vinayagam A, Gibson TE, Lee H-J, Yilmazel B, Roesel C, Hu Y, et al. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc Natl Acad Sci U S A. 2016;113 (18) :4976-81. Abstract

The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

2016_PNAS_Vinayagam.pdf Supplemental Datasets.zip
Hunter GL, Hadjivasiliou Z, Bonin H, He L, Perrimon N, Charras G, et al. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning. Development. 2016;143 (13) :2305-10. Abstract

Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning.

2016_Dev_Hunter.pdf Supplement.pdf

Pages