Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut

Abstract:

The adult Drosophila midgut is a complex tissue with various cell types that interact closely to maintain tissue integrity and perform organ function. The gut consists of a pseudostratified epithelium, a latticework of circular and longitudinal visceral muscles that supports the epithelium, and a tracheal vascular system. The major cell types of the midgut epithelium are the absorptive enterocytes (ECs), characterized by a large nucleus and microvilli-covered luminal surface, the enteroendocrine cells (EEs) that produce various hormones, and the intestinal stem cells (ISCs) that produce ECs and EEs [1,2] . Interactions between these cell types are critical to maintaining tissue integrity and gut function. For example, ISCs proliferation and differentiation are controlled by a complex network integrating autocrine and paracrine signals [3,4] ; hormones derived from EEs regulate EC physiology; and EC-derived factors signal to ISCs following gut damage.

 

Publisher's Version

See also: Review Article
Last updated on 10/10/2019