Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes

2018_PNAS_Zhang.pdf1.31 MB
Supplement.pdf1.98 MB

Date Published:

2018 Mar 22

Abstract:

In insects, juvenile hormone (JH) and the steroid hormone ecdysone have opposing effects on regulation of the larval-pupal transition. Although increasing evidence suggests that JH represses ecdysone biosynthesis during larval development, the mechanism underlying this repression is not well understood. Here, we demonstrate that the expression of the Krüppel homolog 1 (Kr-h1), a gene encoding a transcription factor that mediates JH signaling, in ecdysone-producing organ prothoracic gland (PG) represses ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes in bothandApplication of a JH mimic on ex vivo cultured PGs fromandlarvae inducesexpression and inhibits the transcription of steroidogenic enzymes. In addition, PG-specific knockdown ofpromotes-while overexpression hampers-ecdysone production and pupariation. We further find that Kr-h1 inhibits the transcription of steroidogenic enzymes by directly binding to their promoters to induce promoter DNA methylation. Finally, we show that Kr-h1 does not affect DNA replication inPG cells and that the reduction of PG size mediated byoverexpression can be rescued by feeding ecdysone. Taken together, our data indicate direct and conserved Kr-h1 repression of insect ecdysone biosynthesis in response to JH stimulation, providing insights into mechanisms underlying the antagonistic roles of JH and ecdysone.

Last updated on 03/26/2018