Scribble

2002
Mathew D, Gramates SL, Packard M, Thomas U, Bilder D, Perrimon N, et al. Recruitment of scribble to the synaptic scaffolding complex requires GUK-holder, a novel DLG binding protein. Curr Biol. 2002;12 (7) :531-9. Abstract

BACKGROUND: Membrane-associated guanylate kinases (MAGUKs), such as Discs-Large (DLG), play critical roles in synapse maturation by regulating the assembly of synaptic multiprotein complexes. Previous studies have revealed a genetic interaction between DLG and another PDZ scaffolding protein, SCRIBBLE (SCRIB), during the establishment of cell polarity in developing epithelia. A possible interaction between DLG and SCRIB at synaptic junctions has not yet been addressed. Likewise, the biochemical nature of this interaction remains elusive, raising questions regarding the mechanisms by which the actions of both proteins are coordinated. RESULTS: Here we report the isolation of a new DLG-interacting protein, GUK-holder, that interacts with the GUK domain of DLG and which is dynamically expressed during synaptic bouton budding. We also show that at Drosophila synapses DLG colocalizes with SCRIB and that this colocalization is likely to be mediated by direct interactions between GUKH and the PDZ2 domain of SCRIB. We show that DLG, GUKH, and SCRIB form a tripartite complex at synapses, in which DLG and GUKH are required for the proper synaptic localization of SCRIB. CONCLUSIONS: Our results provide a mechanism by which developmentally important PDZ-mediated complexes are associated at the synapse.

2002_Curr Bio_Mathew.pdf Supplement.pdf
2000
Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature. 2000;403 (6770) :676-80. Abstract

The generation of membrane domains with distinct protein constituents is a hallmark of cell polarization. In epithelia, segregation of membrane proteins into apical and basolateral compartments is critical for cell morphology, tissue physiology and cell signalling. Drosophila proteins that confer apical membrane identity have been found, but the mechanisms that restrict these determinants to the apical cell surface are unknown. Here we show that a laterally localized protein is required for the apical confinement of polarity determinants. Mutations in Drosophila scribble (scrib), which encodes a multi-PDZ (PSD-95, Discs-large and ZO-1) and leucine-rich-repeat protein, cause aberrant cell shapes and loss of the monolayer organization of embryonic epithelia. Scrib is localized to the epithelial septate junction, the analogue of the vertebrate tight junction, at the boundary of the apical and basolateral cell surfaces. Loss of scrib function results in the misdistribution of apical proteins and adherens junctions to the basolateral cell surface, but basolateral protein localization remains intact. These phenotypes can be accounted for by mislocalization of the apical determinant Crumbs. Our results show that the lateral domain of epithelia, particularly the septate junction, functions in restricting apical membrane identity and correctly placing adherens junctions.

2000_Nat_Bilder.pdf