Ewen-Campen B, Perrimon N. ovoD Co-selection: A Method for Enriching CRISPR/Cas9-Edited Alleles in Drosophila. G3 (Bethesda). 2018;Abstract
Screening for successful CRISPR/Cas9 editing events remains a time consuming technical bottleneck in the field of genome editing. This step can be particularly laborious for events that do not cause a visible phenotype, or those which occur at relatively low frequency. A promising strategy to enrich for desired CRISPR events is to co-select for an independent CRISPR event that produces an easily detectable phenotype. Here, we describe a simple negative co-selection strategy involving CRISPR-editing of a dominant female sterile allele, In this system (" co-selection"), the only functional germ cells in injected females are those that have been edited at the locus, and thus all offspring of these flies have undergone editing of at least one locus. We demonstrate that co-selection can be used to enrich for knock-out mutagenesis via nonhomologous end-joining (NHEJ), and for knock-in alleles via homology-directed repair (HDR). Altogether, our results demonstrate that co-selection reduces the amount of screening necessary to isolate desired CRISPR events in
2018_G3_Ewen-Campen.pdf Supplemental Files.zip
Chou TB, Noll E, Perrimon N. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development. 1993;119 (4) :1359-69. Abstract

The 'dominant female-sterile' technique used to generate germ-line mosaics in Drosophila is a powerful tool to determine the tissue specificity (germ line versus somatic) of recessive female-sterile mutations as well as to analyze the maternal effect of recessive zygotic lethal mutations. This technique requires the availability of germ-line-dependent, dominant female-sterile (DFS) mutations that block egg laying but do not affect viability. To date only one X-linked mutation, ovoD1 has been isolated that completely fulfills these criteria. Thus the 'DFS technique' has been largely limited to the X-chromosome. To extend this technique to the autosomes, we have cloned the ovoD1 mutation into a P-element vector and recovered fully expressed P[ovoD1] insertions on each autosomal arm. We describe the generation of these P[ovoD1] strains as well as demonstrate their use in generating germ-line chimeras. Specifically, we show that the Gap1 gene, which encodes a Drosophila homologue of mammalian GTPase-activating protein, is required in somatic follicle cells for embryonic dorsoventral polarity determination.

Oliver B, Perrimon N, Mahowald AP. The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev. 1987;1 (9) :913-23. Abstract

Mutations at the ovo locus result in a defective female germ line. The male germ line is not affected. Adult females homozygous for loss-of-function alleles have no germ line stem cells. The sex-specific phenotype is evident at late blastoderm and early gastrula stages when the pole cells of embryos homozygous for a loss-of-function allele begin to die. This is the only zygotically acting gene known that is required specifically for embryonic germ line survival. Females heterozygous for dominant alleles or homozygous for alleles reducing gene activity exhibit a range of defects in oogenesis. We have mapped the ovo locus to position 4E1-2 of the salivary gland X chromosome by using a set of cytologically visible deletions.

1987_Genes Dev_Oliver.pdf