A salivary gland-secreted peptide regulates insect systemic growth

Citation:

Li Z, Qian W, Song W, Zhao T, Yang Y, Wang W, et al. A salivary gland-secreted peptide regulates insect systemic growth. Cell Rep. 2022;38 (8) :110397.
2022_CellReports_Li.pdf6.39 MB

Date Published:

2022 Feb 22

Abstract:

Insect salivary glands have been previously shown to function in pupal attachment and food lubrication by secreting factors into the lumen via an exocrine way. Here, we find in Drosophila that a salivary gland-derived secreted factor (Sgsf) peptide regulates systemic growth via an endocrine way. Sgsf is specifically expressed in salivary glands and secreted into the hemolymph. Sgsf knockout or salivary gland-specific Sgsf knockdown decrease the size of both the body and organs, phenocopying the effects of genetic ablation of salivary glands, while salivary gland-specific Sgsf overexpression increases their size. Sgsf promotes systemic growth by modulating the secretion of the insulin-like peptide Dilp2 from the brain insulin-producing cells (IPCs) and affecting mechanistic target of rapamycin (mTOR) signaling in the fat body. Altogether, our study demonstrates that Sgsf mediates the roles of salivary glands in Drosophila systemic growth, establishing an endocrine function of salivary glands.

Last updated on 02/24/2022