Multiple functions of segment polarity genes in Drosophila.

Citation:

Perrimon N, Mahowald AP. Multiple functions of segment polarity genes in Drosophila. Dev Biol. 1987;119 (2) :587-600.
1987_Dev Bio_Perrimon.pdf18.73 MB

Date Published:

1987 Feb

Abstract:

l(1)dishevelled (l(1)dsh) is a late zygotic lethal mutation that exhibits a rescuable maternal effect lethal phenotype. l(1)dsh/Y embryos, derived from females possessing a homozygous l(1)dsh germline clone, exhibit a segment polarity embryonic phenotype. Analysis of the development of these embryos indicates: (1) that segmental boundaries do not form although the correct number of tracheal pits is formed; (2) that pockets of cell death occur between the tracheal pits; and (3) that engrailed expression becomes abnormal during germ band shortening. We propose that, in the absence of both maternal and zygotic expression of l(1)dsh+, cells from each posterior compartment die. Subsequently, cells from the anterior compartment must rearrange their positional values to generate the segment polarity phenotype. We have compared the phenotype of five other segment polarity loci: four embryonic lethals [l(1)armadillo, l(2)gooseberry, l(2)wingless, and l(3)hedgehog]; and the late zygotic lethal, l(1)fused. Only l(2)wingless embryos exhibit early segmentation defects similar to those found in l(1)dsh/Y embryos derived from homozygous germline clones. In contrast, segmentation is essentially normal in l(1)armadillo, l(2)gooseberry, l(3)hedgehog, and l(1)fused embryos. The respective maternal and zygotic contribution and the roles of the segment polarity loci for the patterning of the embryo and the adult are discussed.

Last updated on 10/10/2016