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Abstract

Characterizing the proteome composition of organelles and subcellular regions

of living cells can facilitate the understanding of cellular organization as well

as protein interactome networks. Proximity labeling-based methods coupled

with mass spectrometry (MS) offer a high-throughput approach for systematic

analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes

that generate reactive radicals to covalently tag neighboring proteins. The

tagged endogenous proteins can then be isolated for further analysis by MS. To

analyze protein–protein interactions or identify components that localize to

discrete subcellular compartments, spatial expression is achieved by fusing the

enzyme to specific proteins or signal peptides that target to particular subcellu-

lar regions. Although these technologies have only been introduced recently,

they have already provided deep insights into a wide range of biological pro-

cesses. Here, we provide an updated description and comparison of proximity

labeling methods, as well as their applications and improvements. As each

method has its own unique features, the goal of this review is to describe how

different proximity labeling methods can be used to answer different biological

questions.
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1 | INTRODUCTION

Specialized biological processes occur in different organelles and subcellular regions. In addition, protein functions cor-
relate with their subcellular localizations and interactions. Understanding how cellular structures underlie specialized
functions requires the comprehensive identification of proteins within spatially defined cellular domains. Further, iden-
tification of interacting proteins is key to elucidating the mechanisms underlying complex cellular processes.

Mass spectrometry (MS) techniques have been used to systematically characterize the proteome of isolated organ-
elles and protein interactors purified by affinity pull-down or following crosslinking. However, these approaches are
limited by available purification methods, as it is not possible in many cases to obtain intact organelles of high purity.
Moreover, even when purification is possible, contamination that results in false positive identification is common. For
example, false positives may be introduced by cellular disruption, as two proteins that normally localize in different
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subcellular regions may artificially interact when membranes are disrupted. In addition, false negatives often occur due
to loss of components caused by disruption of isolated organelles or protein complexes. Additionally, a variety of dis-
crete cellular regions cannot be purified by centrifugation, such as specialized endoplasmic reticulum (ER)-plasma
membrane (PM) junctions that are critical for lipid metabolism and Ca2+ signaling (Carrasco & Meyer, 2011; Elbaz &
Schuldiner, 2011; Hogan, Lewis, & Rao, 2010; Stefan, Manford, & Emr, 2013). Similarly, transient or weak interactions
may be lost during purification of a protein interactome due to stringent washes.

Recently, proximity-dependent labeling methods have been developed and utilized for mapping compartmental pro-
teome and protein interactomes. In this updated review, we compare proximity labeling techniques that utilize different
enzymes and describe how they are used to address limitations of traditional methods.

2 | OVERVIEW OF ENZYME-CATALYZED PROXIMITY LABELING FOR
PROTEOMIC PROFILING

In general, proximity labeling relies on enzymes that convert a substrate into a reactive radical that covalently tags
neighboring proteins. We will discuss four major enzyme systems utilized for proximity labeling: BioID (proximity-
dependent biotin identification), HRP (horseradish peroxidase), APEX (engineered ascorbate peroxidase), and PUP-IT
(pupylation-based interaction tagging).

To achieve spatially restricted labeling, the enzymes are usually fused with a targeting signal peptide, a protein of
interest, or antibody. After performing proximity labeling in living cells, cells are then lysed and tagged endogenous
proteins are isolated using streptavidin beads. Small peptides from enriched proteins are generated by trypsin digestion
and subsequently analyzed by tandem mass spectrometry (aka MS/MS or MS2). The mass-to-charge (m/z) ratio of pep-
tides and their fragment ions are then used to identify the peptide sequence through computational comparison against
an established database (Figure 1).

Importantly, with proximity labeling, cells and tissues remain intact when the proteome or interactome is labeled.
Thus, the potential for false-positive identifications is minimized, as artificial interactions caused by disruption of cells
and contaminants during purification steps no longer affect the results. Moreover, proximity labeling can be applied to
bypass organelle purification steps, offering an alternative approach for systematic proteomic characterization in live
cells. As proximity labeling is an emerging method that enables proteomic profiling of organelles, subcellular domains,
and interactomes, this updated review aims to provide an overview of the different methods to aid planning and execu-
tion of future experiments.

3 | BIOID-BASED PROXIMITY LABELING

BioID-based proximity labeling employs a mutant form of the biotin ligase BirA from Escherichia coli (Choi-Rhee,
Schulman, & Cronan, 2004; Cronan, 2005; Roux, Kim, Raida, & Burke, 2012). The biotin ligase BirA is a conserved
enzyme that mediates the attachment of biotin to target proteins (Chakravartty & Cronan, 2012). In the presence of
ATP, BirA biotinylates proteins by catalyzing the conversion of biotin to reactive biotinoyl-50-AMP, which specifically
tags a lysine residue of a subunit of the acetyl-CoA carboxylase (Chapman-Smith & Cronan Jr., 1999; Choi-Rhee
et al., 2004). Wild-type BirA has a high affinity to biotinol-50AMP and keeps it in the active site until the acetyl-CoA car-
boxylase, or a short acceptor peptide, becomes available (Beckett, Kovaleva, & Schatz, 1999). Since BirA has a high
specificity for its target sequence, it has been used to study specific protein–protein interactions (Fernandez-Suarez,
Chen, & Ting, 2008): BirA is fused to a bait protein and BAP (biotin acceptor peptide) is fused to a prey protein. If the
interaction occurs, the prey will be close enough to the bait to become biotinylated.

To achieve promiscuous labeling, the active site of BirA has been mutated, enabling random biotinylation of vicinity
proteins without BAP (Choi-Rhee et al., 2004; Cronan, 2005). This method is named BioID and the mutated form of
BirA for proximity labeling is called BioID or BirA* to be distinguished from the wild-type and other mutant forms of
BirA (Roux et al., 2012) (Figure 2 and Figure 3). When the active site of BirA is mutated (R118G), its affinity to biotin-
50AMP is greatly reduced. The highly-reactive biotinoyl-50-AMP is released from the active site of BioID and
nonspecifically reacts with nearby proteins. Therefore, BioID can covalently tag nearby endogenous proteins on lysine
residues. Although the labeling radius of BioID may vary depending on the local environment, the labeling radius of
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BioID is estimated to be around 10 nm using the structure of the nuclear pore complex as a “molecular ruler” (Kim
et al., 2014).

In addition to the E. coli BioID enzyme, promiscuous biotin ligases from other species have been isolated. BioID2
was generated with an R40G mutation in the reactive site of a biotin ligase from Aquifex aeolicus to allow promiscuous
labeling (Kim et al., 2016). BioID2 lacks the DNA binding domain at the N-terminus and is thus smaller (233 a.a.) than
E. coli BioID (321a.a.), potentially minimizing functional interference with a tagged protein. BioID2 performs similar
labeling chemistry as BioID but shows a higher activity and requires less biotin. Similarly, BASU is a promiscuous BirA
from Bacillus subtilis with improved biotinylation activity compared to BioID and BioID2 (Ramanathan et al., 2018).
Like BioID2, BASU lacks the N-terminal DNA-binding domain and is smaller than BioID. Finally, ancestral reconstruc-
tion of BirA proteins led to the recent isolation of a promiscuous biotin ligase called AirID, which exhibits robust bio-
tinlyation in cultured human cells (Kido et al., 2020).

The BioID enzyme has also been engineered for increased activity. TurboID was isolated by directed evolution of
BioID for increased biotinlyation activity via yeast display (Branon et al., 2018). In human HEK293T cells, TurboID can
label an equivalent amount and diversity of proteins in 10 minutes as BioID, BioID2, or BASU can label in 18 hr. A
smaller variant of TurboID called miniTurbo lacks the DNA-binding domain while still retaining robust biotinylation

FIGURE 1 Proximity labeling for proteomic

profiling. To achieve regional protein labeling, the

enzymes are usually fused with a targeting signal

peptide or a spatially restricted protein (SP). The

enzymes can also be fused with any protein of interest

for protein interactome studies. After performing

proximity labeling in living cells, the cells are lysed and

the tagged endogenous proteins are isolated using

steptavidin beads. Small peptides of enriched proteins

are generated by trypsin digestion and subsequently

ionized for tandem mass spectrometry (MS/MS)

analysis. The mass-to-charge (m/z) ratio of each peptide

and their fragment ions is then used to identify peptide

sequence through computational comparison against

established databases
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FIGURE 2 Proximity labeling methods. HRP and APEX are peroxidases that, when activated by H2O2, are able to turn biotin-phenol

substrates into highly reactive radicals that covalently tag neighboring proteins on electron-rich amino acids. HRP is inactive in a reducing

environment, such as the cytosol, but functions extracellularly. BioID, a mutant form of the biotin ligase BirA, can convert biotin into

radicals that can covalently tag neighboring proteins on lysine residues. PafA is a ligase that can covalently tag neighboring proteins with the

small protein Pup onto lysine residues. APEX, engineered ascorbate peroxidase; BioID, proximity-dependent biotin identification; HRP,

horseradish peroxidase
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activity. While miniTurbo has �2x fold less activity than TurboID, it exhibits lower biotinlyation activity in the absence
of exogenously added biotin and thus may be more suited to tighter labeling windows. Under extreme conditions
(e.g., high expression levels, long labeling times), TurboID expression can be toxic in human cells, flies, and worms,
suggesting that the evolution of this enzyme for increased activity may have effectively reached an upper limit. In addi-
tion to being useful in spatial proteomics (Branon et al., 2018), TurboID has also proven successful to discover new
protein–protein interactions (Larochelle, Bergeron, Arcand, & Bachand, 2019; Mair, Xu, Branon, Ting, &
Bergmann, 2019; Tachie-Menson et al., 2020; Zhang et al., 2019). However, for some bait proteins, TurboID may

FIGURE 3 Directed

evolution of proximity labeling

components. Proximity labeling

enzymes have been modified

from their wild-type

counterparts by selecting for

mutants with promiscuous

activity. Directed evolution has

been used to isolate enzymes

with increased activity,

increased stability, smaller

molecular weight, and that are

split into inactive fragments that

reconstitute activity when

combined. Smaller Pup

substrates have also been

identified
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increase the number of labeled background proteins relative to BioID (May, Scott, Campos, & Roux, 2020), perhaps due
to its robust enzymatic activity.

Promiscuous biotin ligases have also been engineered with new functions. By screening all possible mutations at
R118 in E. coli BirA, a new promiscuous biotin ligase variant (R118K) was isolated (Oostdyk et al., 2019). While R118K
activity was less than R118G (BioID), R118K may be useful for proximity labeling under conditions where exogenous
biotin is not added. Three independent studies derived split-BioID proteins, which were identified by screening for inac-
tive fragments of BioID that can reform to restore biotinylation activity when physically brought together (De Munter
et al., 2017; Kwak et al., 2020; Schopp et al., 2017). By linking these BioID fragments to two interacting proteins, the
split-BioID system can be used to label proximal proteins only associated with this protein–protein pair. Recently, a
split-TurboID system has been developed, with more robust labeling upon reconstitution (Cho et al., 2020).

Promiscuous biotin ligase enzymes has been used to map local interactomes, identify transient protein interactions,
map organelle components, and thus provide a better understanding of cellular structures as well as interactions occur-
ring during signal transduction. The application and impact of promiscuous biotin ligases have been extensively
reviewed (Kim & Roux, 2016; Li, Li, Wang, & Di, 2017; Varnaite & MacNeill, 2016). Recent applications include interac-
tion mapping of Ras (Kovalski, Shanderson, & Khavari, 2019), mitochondrial transcription elongation factor (Jiang
et al., 2019), influenza A virus PA-X (Gaucherand et al., 2019), growth factor independence 1B (McClellan et al., 2019),
receptor PTPRK (Fearnley et al., 2019), murine coronavirus replicase transcriptase complex (V'Kovski et al., 2019),
PCNA (Srivastava et al., 2018), NHLRC2 (Paakkola et al., 2018), GRPEL1/2 (Konovalova et al., 2018), and IGF1R
(Bareja, Hodgkinson, Soderblom, Waitt, & Dzau, 2018), Toxoplasma gondii conoid proteins (Long, Anthony, Drewry, &
Sibley, 2017), N-cadherin (Li et al., 2019), the NuRD complex (BioID2) (Sher et al., 2019), plant N immune receptor
(Zhang et al., 2019), protein arginine methyltransferase Rmt3 and the RNA exosome subunits, Rrp6 and Dis3
(Larochelle et al., 2019), AKAP18 (Smith et al., 2018), plant transcription factor FAMA (Mair et al., 2019), and stress
granules (SGs) processing bodies (PBs) (Youn et al., 2018), and desmosomes (Badu-Nkansah & Lechler, 2020). In addi-
tion, BioID has recently been used to identify RNA-binding proteins by tethering BioID to RNA transcripts via MS2
aptamers (Mukherjee et al., 2019), and used in conjunction with traditional affinity purification to improve proteomic
coverage and help determine distances between protein complex members (Liu et al., 2018).

4 | HRP-BASED PROXIMITY LABELING

HRP is a peroxidase that, when activated by H2O2, is able to convert a substrate into a highly reactive radical that cova-
lently tags neighboring proteins on electron-rich amino acids (Li et al., 2014). HRP is inactive in a reducing environ-
ment, such as the cytosol, because the structure of HRP, which is maintained with four disulfide bonds and two Ca2+

ion-binding sites, is disrupted in reducing conditions (Hopkins, Gibson, Stinchcombe, & Futter, 2000). This has limited
its use for determining intracellular interactomes, and motivated the development of APEX. Nevertheless, HRP is active
in oxidizing environments, such as the lumen of the ER or the Golgi and the extracellular region. Thus, HRP has been
used for proteomic mapping on the surface of living cells (Cijsouw et al., 2018; Li et al., 2020; Loh et al., 2016; Wu,
Nagala, & Crocker, 2017). In addition, HRP can also be used as an electron microscopy (EM) tag (Ellisman, Deerinck,
Shu, & Sosinsky, 2012). With H2O2, HRP can catalyze the polymerization of 3,30-diaminobenzidine (DAB) which pre-
cipitates and creates an EM contrast after OsO4 fixation.

Although HRP can catalyze a variety of substrates, for proximity labeling two in particular have been used: (a) the
enzyme-mediated activation of radical source (EMARS) method uses fluorescein arylazide or biotin arylazide
(Hashimoto et al., 2012; Honke & Kotani, 2012; Ishiura et al., 2010; Iwamaru et al., 2015; Jiang et al., 2012; Kotani
et al., 2008; Miyagawa-Yamaguchi, Kotani, & Honke, 2014, 2015; Yamashita, Kotani, Ishiura, Higashiyama, &
Honke, 2011). Fluorescein arylazide reduces the cytosolic background generated by biotin-aryl azide (Jiang et al., 2012),
which is membrane permeable during the EMARS reaction and activated by endogenous enzymes (Honke &
Kotani, 2012; Kotani et al., 2008); and (b) the selective proteomic proximity labeling assay using tyramide (SPPLAT)
method using biotin-tyramide, which is also known as biotin-phenol (Li et al., 2014; Rees, Li, Perrett, Lilley, &
Jackson, 2015).

HRP has been used extensively for other applications, such as ELISA and immunochemistry (Ryan, Carolan, &
O'Fagain, 2006). Further, antibody-HRP conjugates have been generated that can also be used for proximity labeling.
However, this application is limited by the affinity of the antibody. Nevertheless, antibody-HRP conjugates have been
successfully used to identify cell surface molecules such as the composition of the B cell receptor cluster, proteins that
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interact with Thy1, β1 integrin, CD20, and PrPC, and signaling ligands (Chang et al., 2017; Hashimoto et al., 2012;
Honke & Kotani, 2012; Ishiura et al., 2010; Iwamaru et al., 2015; Jiang et al., 2012; Kotani et al., 2008; Li et al., 2014;
Miyagawa-Yamaguchi et al., 2014, 2015; Wu et al., 2017; Yamashita et al., 2011). Antibody-HRP conjugates can also be
used to identify proteins in fixed cells (Bar et al., 2018).

New versions of HRP have been isolated with modified functions. A bimolecular complementation version of HRP
has recently been reported (Martell et al., 2016). This split HRP has been generated to characterize intercellular
protein–protein interactions and visualize synapses. The two split HRP fragments were fused with neurexin and neu-
roligin, which bind to each other across the synaptic cleft. When the split fragments are brought together as a result of
the neurexin-neuroligin interaction, they reconstitute a functional form of HRP that allows proximity labeling. This
binary system offers another level of control to the HRP system, making it useful for finer spatial restriction. In addi-
tion, two enhanced versions of HRP have been isolated. vHRP (Yamagata & Sanes, 2018) was isolated based on stabiliz-
ing mutations identified in split-HRP. In parallel, eHRP (Cruz-Lopez, Ramos, Castilloveitia, & Schikorski, 2018) was
isolated based on directed evolution. Although split HRP and the enhanced HRP variants have not yet been used for
proteomics, their potential use for proteomic mapping of cell–cell interactions is very promising.

5 | APEX-BASED PROXIMITY LABELING

APEX, an engineered ascorbate peroxidase derived from plants, uses the same labeling chemistry and rapid kinetics as
HRP to convert a substrate into a radical in the presence of H2O2 (Martell et al., 2012; Rhee et al., 2013). The key advantage
of APEX over HRP, however, is that it remains active in the reducing environment of the cellular cytosol. Upon activation
by H2O2, APEX catalyzes the conversion of its substrate biotin-phenol into short-lived (<1 ms) and highly reactive radicals,
which can covalently attach to electron-rich amino acids such as tyrosine in nearby endogenous proteins (Hung
et al., 2014; Rhee et al., 2013). The labeling reaction can be stopped by the removal of H2O2 and the addition of quenching
buffer, and the resulting biotinylated proteins can be subsequently isolated using streptavidin beads and further analyzed
by MS. In addition, APEX can catalyze the polymerization and precipitation of DAB creating a contrast after OsO4 fixation
(Martell et al., 2012), which can then be used for EM to visualize the structures where APEX is expressed.

Yeast display selection has been performed to screen for mutations that increase APEX activity (Lam et al., 2015). An
improved version of APEX, called APEX2, has one additional mutation (A134P) and catalyzes the same chemistry as APEX
but with higher activity and sensitivity for promiscuous labeling and EM. APEX2 was further improved with a mutation
(C32S) that improved the stability of APEX2-tagged proteins (Huang et al., 2019). Two groups developed a split-APEX2
where inactive fragments of APEX2 can reconstitute and restore enzymatic activity. One group split APEX2 at amino acids
201/202 (Xue et al., 2017), whereas a second group split APEX2 at nearly the same site (200/201) (Han et al., 2019) but used
directed evolution of the N-terminal fragment to increase the activity of the reconstituted enzyme.

APEX-mediated proximity labeling was first introduced by Rhee and colleagues to circumvent the limitations of tra-
ditional mitochondrial purification and to achieve spatial and temporal specificity of organelle proteome mapping
(Rhee et al., 2013). As biotin-phenoxyl radicals are not membrane-permeable, APEX is excellent for proteomic profiling
of membrane-enclosed subcellular compartments, such as the mitochondria (Chen et al., 2015; Hung et al., 2014; Rhee
et al., 2013) and autophagosomes (Le Guerroue et al., 2017). Nevertheless, APEX is not limited to membrane-enclosed
organelles, and has been used successfully to map proteins in the cilia (Kohli et al., 2017; Mick et al., 2015), SGs
(Markmiller et al., 2018), mitochondria-ER contact points (Cho et al., 2017; Hung et al., 2017), Drosophila ring canals
(Mannix, Starble, Kaufman, & Cooley, 2019), mitochondrial nucleoid (Han et al., 2017), bacterial-host inclusion mem-
brane (Olson et al., 2019), lipid droplets (Bersuker et al., 2017), and lysosome-RNA granule contact points (Liao
et al., 2019). APEX also provides a good tool for identification of protein–protein interactions. For example, APEX fused
with bait proteins have revealed interaction networks of VAPB (James et al., 2019), OPTN (Heo et al., 2019), Rab pro-
teins (Del Olmo et al., 2019), PAQR3 (Cao et al., 2018), MIEF1 microprotein (Rathore et al., 2018), FGF1 (Zhen,
Haugsten, Singh, & Wesche, 2018), ribosome-associated quality control complex (Zuzow et al., 2018), and DNA repair
factors (Gupta et al., 2018). In particular, the fast labeling time of APEX has been leveraged to identify dynamic changes
in protein complex composition (Lobingier et al., 2017; Paek et al., 2017). APEX has also been used for identification of
proteins interacting with specific sequences of RNA (Kaewsapsak, Shechner, Mallard, Rinn, & Ting, 2017; Lu &
Wei, 2019; Ramanathan et al., 2018) and DNA (Gao et al., 2018; Myers et al., 2018; Qiu et al., 2019). Finally, we note
that APEX has recently been used to directly label and identify RNAs (Fazal et al., 2019; Padron, Iwasaki, Ingolia, &
Proximity, 2019; Zhou et al., 2019).
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6 | PUP-IT PROXIMITY LABELING

Recently, a new proximity labeling system using the bacterial PafA enzyme was developed called PUP-IT (Liu
et al., 2018). Unlike BioID, HRP, and APEX, which tag proteins with biotin (known as biotinylation), PafA tags proteins
with a small protein called Pup (known as pupylation). In bacteria, PafA ligates Pup to lysine residues on target pro-
teins, signaling those proteins for degradation. During this reaction, Pup is deaminated at its C-terminus to form
Pup(E) (also known as PupGlu), which PafA phosphorylates and conjugates to a lysine residue (Iyer, Burroughs, &
Aravind, 2008). PafA has no consensus binding motif flanking the target lysine, and therefore should ligate Pup to any
lysine residue in proximity, making it a potentially useful promiscuous protein-labeling enzyme.

To test the effectiveness of PUP-IT as a proximity labeling system, Liu et al. fused PafA to bait proteins and supplied
Pup(E) either as purified protein or via transgenic expression and translation into the cell cytoplasm. This resulted in
pupylation of proteins in the close vicinity of the enzyme—PafA itself, the bait protein, and interacting prey proteins—
but not distant proteins, which indicates a highly specific proximity-dependent labeling reaction. Pupylated proteins
can be detected by molecular weight laddering on protein gels or western blots. In addition, the authors devised a more
versatile method for detection of pupylation by fusing a bacterial-derived carboxylase domain (BCCP) to Pup(E). BCCP
is biotinylated by endogenous ligases in human cells, allowing “bio-Pup(E)” and pupylated proteins to be detected by
western blot using streptavidin-HRP, or purified on streptavidin beads and identified by MS. Using this method, the
authors identified known interactors on the intracellular tail of CD28 such as p85. Recently, the PUP-IT system was
combined with CRISPR-Cas13a (called CRUIS) to identify RNA-binding proteins (Zhang et al., 2020).

Whereas Pup(E) is 64 aa long, two smaller Pup variants were identified called DE28 (28 aa) and Peptide 4.1 (Sun
et al., 2020) (14 aa). In particular, Peptide 4.1 lacks lysine residues, which may be useful to prevent unwanted branched
tags. While these smaller Pup variants may be useful improvements to the PUP-IT system, they have not been tested
under conditions of transgenic expression like Pup(E). Finally, like improvements to BioID, HRP, and APEX, directed
evolution of the PafA enzyme may yield increased or modified labeling activity.

7 | COMPARISON BETWEEN BIOTIN LIGASE-BASED, PEROXIDASE-
BASED, AND PUP LIGASE-BASED APPROACHES

The major differences between biotin ligase-based, peroxidase-based, and Pup ligase-based (PUP-IT) labeling
approaches are the substrates, the targeted amino acid(s), the kinetics, and the working conditions (Figure 2). In addi-
tion to differences in proteomic labeling, APEX, like HRP, can be used for EM, thus allowing confirmation of fine sub-
cellular localization. On the other hand, the proper expression and localization of promiscuous biotin ligases and PafA
can only be verified by other methods like immunostaining and/or Western blotting to rule out the possibility of false
positive from mislocalization of the fusion proteins or slow translation of the fusion protein.

One major difference is the type of substrate used for proteomic analysis. The biotin ligase-based method uses bio-
tin, the peroxidase-based approaches use biotin-phenol, and the PUP-IT method uses biotinylated forms of Pup(E).
Delivery of the substrate to the region of interest is a critical factor. Biotin is actively imported into mammalian cells
and other organisms though distinct mechanisms (Azhar, Booker, & Polyak, 2015). Even though biotin-phenol can be
simply incubated with mammalian cells for cytosolic and mitochondrial protein labeling, a number of studies have
shown that biotin-phenol may not effectively penetrate membranes (Li et al., 2014; Rees et al., 2015). Moreover, special
procedures are required for efficient delivery of biotin-phenol and optimal proximity labeling in yeast (Hwang &
Espenshade, 2016; Singer-Kruger et al., 2020). Therefore, optimizing biotin-phenol delivery to a region of interest in a
specific cell type may be required to achieve successful protein labeling. Chemically synthesized bio-DE28 and bio-Pep-
tide4.1 can also be incubated with cells but would likely not penetrate the PM. In contrast, genetically encoded BCCP-
PupE is translated into the cytoplasm where it is biotinylated by endogenous ligases. While PupE has the unique
advantage of being genetically modifiable with additional domains, this tag is substantially larger than biotin and may
interfere with protein function.

The half-life of biotin-50-AMP radicals generated by promiscuous biotin ligases is on the order of minutes in aqueous
solutions (Demoss, Genuth, & Novelli, 1956), which is longer than that of APEX-generated biotin-phenoxyl radicals
(<1 ms) (Hung et al., 2014; Rhee et al., 2013). The shorter half-life of unstable radicals may result in a smaller labeling
radius, which is also determined by other factors, such as local intracellular environments. Unfortunately, the labeling
radius of promiscuous biotin ligases and APEX has been estimated by different methods and in different cellular
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regions. Unlike biotin ligase and peroxidase-based approaches, PafA enzyme does not release the Pup tag, thus ensuring
that only proteins in close contact with PafA become labeled. Therefore, PUP-IT labeling will likely not be as useful for
spatial proteomics such as organelle mapping. Furthermore, the lack of a diffusible reactive substrate may spatially
limit labeling to lysine residues on prey proteins that directly face PafA.

Promiscuous biotin ligases and PafA labels lysine residues of nearby proteins whereas APEX and HRP tag electron-
rich tyrosine residues. Generally, the estimated amount of lysine present in proteins is higher than that of tyrosine
(Echols et al., 2002; Tourasse & Li, 2000). Thus, when the number of available tyrosine residues is limited, potential tar-
get proteins may not be identified using APEX and HRP.

Promiscuous biotin ligases and PafA overall show slower kinetics than APEX or HRP. The optimal labeling time for
APEX (�1 min) is shorter than that for HRP (5–10 min) and much shorter than for BioID (15–24 hr) and PafA (24 hr).
The only exception is TurboID and miniTurbo, which label on timescales closer to APEX and HRP (�10 min).
Although biotin is not toxic, biotinylation of proteins over a long period may perturb protein function, lead to artificial
interactions, and cause cell toxicity, which was confirmed in cultured mammalian cells expressing TurboID longer than
24 hr (Branon et al., 2018). This difference in labeling time will undoubtedly change the specificity of the labeled
proteomes. While promiscuous biotin ligases and PUP-IT are useful for capturing entire changes in protein complexes
during a longer period of time, APEX is excellent for characterizing rapid dynamic changes in proteomes that can only
be achieved with a short labeling window, such as acute responses to drug treatment (Lobingier et al., 2017; Paek
et al., 2017). The fast labeling times of TurboID suggests it too can be applied in this manner.

Notably, the activity of BioID or BioID2 is greatly reduced at temperatures below 37�C13. For model systems that
need to be maintained under 37�C, BioID cannot be easily used. Nevertheless, BioID has been successfully applied to
many organisms in addition to mammalian cells, such as single celled organisms (Trypanosoma brucei, T. gondii, Dic-
tyostelium discoideum, Plasmodium berghei), invertebrates (Drosophila melanogaster, Caenorhabditis elegans), and
plants (Nicotiana benthamiana, Arabidopsis thaliana) (Batsios, Ren, Baumann, Larochelle, & Graf, 2016; Chen
et al., 2015; Dingar et al., 2015; Hu, Zhou, & Li, 2015; Kehrer, Frischknecht, & Mair, 2016; McAllaster et al., 2015;
Morriswood et al., 2013; Zhou, Hu, & Li, 2016). In contrast, TurboID and miniTurbo were evolved in yeast grown at
30�C, perhaps explaining why they perform well in Drosophila and C. elegans, which are grown at 25 and 20�C, respec-
tively. APEX has been shown to be active in Drosophila cultured cells at 25�C and in yeast cultured at room tempera-
ture, in addition to showing good activity in mammalian cells that are cultured at 37

�
C. This temperature range allows

APEX to be broadly suitable for studies in a variety of model organisms.

8 | COMPARISON BETWEEN APEX AND HRP-BASED APPROACHES

Both APEX and HRP catalyze the same proximity labeling chemistry. The key parameter that one should consider for
their usage is the environment to which the enzyme will be exposed. As mentioned above, HRP is inactive in the cyto-
sol; however, it is functional when it faces outside the cell on the cell surface and has been successfully used to identify
membrane proteins (Bausch-Fluck, Milani, & Wollscheid, 2019; Chang et al., 2017; Cijsouw et al., 2018; Hashimoto
et al., 2012; Honke & Kotani, 2012; Ishiura et al., 2010; Iwamaru et al., 2015; Jiang et al., 2012; Kotani et al., 2008; Li
et al., 2014, 2020; Loh et al., 2016; Miyagawa-Yamaguchi et al., 2014, 2015; Wu et al., 2017; Yamashita et al., 2011).
Notably, many previous studies used antibody-conjugated HRP (Bar et al., 2018; Chang et al., 2017; Hashimoto
et al., 2012; Honke & Kotani, 2012; Ishiura et al., 2010; Iwamaru et al., 2015; Jiang et al., 2012; Kotani et al., 2008; Li
et al., 2014; Miyagawa-Yamaguchi et al., 2014, 2015; Wu et al., 2017; Yamashita et al., 2011). A key advantage of the
HRP-mediated approach is that many antibody-HRP conjugates are currently available. As noted previously, however,
the use of antibody-conjugated HRP in proximity labeling is limited by the affinity of the antibody.

9 | ANALYSIS OF PROTEOMIC DATA FROM PROXIMITY LABELING
APPROACHES

A challenge common to all labeling strategies is to distinguish candidate proteins from background in MS data. Gener-
ally, proteins with the highest abundance, and represented by 2 or more independent peptides, are chosen for further
study even though low-abundance candidates may potentially be biologically relevant. Researchers have devised addi-
tional experimental procedures to help generate a high-confidence and comprehensive list of candidates from MS data:
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(a) Proximity labeling coupled with quantitative MS can be achieved using metabolic labeling such as SILAC (stable iso-
tope labeling by amino acid in cell culture) (Ong et al., 2002) or done with in vitro chemical labeling, such as iTRAQ
(isobaric tags for relative and absolute quantification) (Ross et al., 2004) and TMT (tandem mass tags) (Thompson
et al., 2003). (b) Additional negative controls can help filter out background labeled proteins. For example, researchers
can target a labeling enzyme to a different organelle or protein complex in addition to the primary target (Hung
et al., 2014). Furthermore, isogenic cell lines can be used to avoid differences in transgene expression (Hesketh, Youn,
Samavarchi-Tehrani, Raught, & Gingras, 2017; Vandemoortele et al., 2019). (c) Background due to nonspecific labeling
can be reduced by inducibly activating the labeling enzyme (Cho et al., 2017; Kehrer et al., 2016) or using endogenous
CRISPR/Cas9 tagging of bait proteins to maintain physiological levels of the labeling enzyme (Long, Brown, &
Sibley, 2018). (d) True positives can be distinguished by identifying peptide biotinylation sites (Kim et al., 2018; Lee
et al., 2016; Udeshi et al., 2017). See additional reviews for detailed considerations for proximity labeling experimental
design and data analysis (Gingras, Abe, & Raught, 2019; Samavarchi-Tehrani, Samson, & Gingras, 2020).

10 | PROXIMITY LABELING IN DEVELOPMENTAL SYSTEMS

Proximity labeling is typically performed in cultured cells due to technical advantages of this system (e.g., easy delivery
of labeling reagents, efficient cell lysis of large quantities of cells). However, the application of proximity labeling tools
in vivo has specific benefits. For example, in vivo protein labeling allows researchers to identify organelle components
or protein interactions from cells in a normal physiological environment, including cell types that would be too difficult
grow in culture (e.g., neurons (Han, Li, & Ting, 2018)). Furthermore, by expressing labeling enzymes from transgenes,
protein labeling can be restricted to specific cell types or developmental stages. Cells expressing labeling enzymes can
also be transplanted into otherwise wild-type host organisms.

Penetration of labeling substrate into target tissues and cells is a significant technical challenge of using proximity
labeling tools in vivo. For example, experiments using APEX or HRP require incubating live dissected tissues with
biotin-phenol. For some experiments, this dissection step might be too laborious, or make it difficult to collect enough
material for pulldown/MS analysis. In contrast, promiscuous biotin ligases can label proteins in intact organisms. This
is because biotin is membrane permeable and can be added to an organism's water/food supply. Temporal labeling
experiments may be difficult using this method, as biotin needs to ingested and perfuse to the target tissue. For exam-
ple, Drosophila adult flies expressing TurboID exhibit significant labeling only after 16 hr of feeding flies biotin (Branon
et al., 2018). This problem might be addressed by direct injection of biotin into the organism (Han et al., 2018), or tem-
poral control of biotin ligase expression. Finally, while Pup-IT has yet to be applied in vivo, the PupE label can be genet-
ically encoded, potentially avoiding tissue penetration entirely.

Many groups have applied proximity labeling tools in developmental systems, such as Arabidopsis (Khan, Youn, Gingras,
Subramaniam, & Desveaux, 2018; Kim et al., 2019; Mair et al., 2019), C. elegans (Branon et al., 2018; Reinke, Mak, Troemel, &
Bennett, 2017), Drosophila (Branon et al., 2018; Chen, Hu, et al., 2015; Li et al., 2020; Mannix et al., 2019; Shinoda, Hanawa,
Chihara, Koto, & Miura, 2019), and mouse (Brudvig et al., 2018; Dingar et al., 2015; Uezu et al., 2016). Importantly, some have
used proximity-labeling tools to discover new components of developmental processes. For example, APEX was used in Dro-
sophila to identify novel components of the ring canals, which are intercellular pores that transport cellular material from
nurse cells to the developing oocyte (Mannix et al., 2019). By tagging known ring canal proteins with APEX, and phenotypic
screening MS hits by RNAi, they identified eight new proteins important for ring canal morphology. Another study in Dro-
sophila used HRP localized to the cell surface to identify new wiring regulators in developing and adult olfactory projection
neurons (Li et al., 2020). RNAi screening of MS hits revealed 20 new developmental regulators of olfactory projection neuron
wiring, including the lipoprotein receptor LRP1. Finally, in C. elegans, APEX was expressed under the control of four different
tissue-specific enhancer elements, as well as targeted to either the nucleus or cytoplasm (Reinke et al., 2017). By comparing
MS datasets from each condition, they identified tissue specific and subcellular specific proteins, seven of which were con-
firmed by visualizing proteins tagged with green fluorescent protein (GFP) and had no previous such annotation.

11 | CONCLUSION/PERSPECTIVES

Since the recent introduction of proximity labeling, the method has made significant contributions to the mapping of
local interactomes relevant to a wide range of biological processes. By tagging regional proteomes, proximity labeling
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overcomes issues associated with traditional approaches of organelle purification and allows proteomic analysis of other
types of subcellular regions. A disadvantage that all proximity labeling-based methods have in common is that they can-
not distinguish direct binding of two proteins from proximity of two adjacent proteins. Thus, these methods serve as dis-
covery methods that require detailed follow-up studies. Nevertheless, as proximity labeling does not require disruption of
cells for complex isolation, these methods not only preserve evidence of weak or transient interactions that are not detect-
able using traditional approaches but also minimizes false discovery by eliminating false positives generated during lysis
or disruption. Importantly, as proximity labeling can be performed in living cells, researchers can study protein–protein
interactions and proteomic alterations in physiologically-relevant conditions. Proximity labeling has been adapted to sev-
eral model systems, making this technology available to study diverse biological problems in a wide range of organisms.

Notably, while improved variants of labeling systems are now available (Figure 3), further improvements are likely
to be made in the near future. In particular, variants of PafA with faster kinetics and higher activity could be isolated
that match the robustness of APEX2 and TurboID enzymes. Furthermore, PafA variants that release diffusible reactive
PupE, similar to promiscuous biotin ligase-based and peroxidase-based systems, would make the PUP-IT system more
useful for spatial proteomics such as organelle mapping. Furthermore, a split-PafA enzyme would be a valuable addi-
tion to existing split labeling tools to fine-tune spatial restrictions.

Importantly, the ease of applying genetically encoded enzymes will benefit greatly from the powerful genome
editing using CRISPR technology (Housden & Perrimon, 2016; Komor, Badran, & Liu, 2016), as these enzymes can now
be easily fused to any gene of interest via a knock-in approach. In addition, numerous genetic engineering tools already
available for organisms such as Drosophila facilitate a wide range of proximity-labeling applications. For example, the
existing library of MiMICs, a transposon insertion resource for engineering Drosophila genes, allows for rapid tagging of
genes (Nagarkar-Jaiswal et al., 2015; Venken et al., 2011). Altogether, a broad-range of proximity-labeling applications
that build on existing tools are now possible and likely to provide deep insights into various biological questions.
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