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With the advent of single-cell RNA sequencing (scRNA-seq) technologies, there has been a spike in stud-
ies involving scRNA-seq of several tissues across diverse species including Drosophila. Although a few
databases exist for users to query genes of interest within the scRNA-seq studies, search tools that enable
users to find orthologous genes and their cell type-specific expression patterns across species are limited.
Here, we built a new search database, DRscDB (https://www.flyrnai.org/tools/single_cell/web/), to
address this need. DRscDB serves as a comprehensive repository for published scRNA-seq datasets for
Drosophila and relevant datasets from human and other model organisms. DRscDB is based on manual
curation of Drosophila scRNA-seq studies of various tissue types and their corresponding analogous
tissues in vertebrates including zebrafish, mouse, and human. Of note, our search database provides most
of the literature-derived marker genes, thus preserving the original analysis of the published scRNA-seq
datasets. Finally, DRscDB serves as a web-based user interface that allows users to mine gene expression
data from scRNA-seq studies and perform cell cluster enrichment analyses pertaining to various
scRNA-seq studies, both within and across species.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Advances in scRNA-seq technologies have enabled a systems-
level understanding of several tissues at single-cell resolution
across diverse species, resulting in the development of tissue and
cell ‘‘atlases” [1–3]. Although a vast majority of scRNA-seq studies
have been performed in samples from mammals such as mice and
humans, a substantial number of studies in less complex model
organisms have generated an immense volume of new transcrip-
tomic data at the single-cell level. For instance, in the five years
that have followed the availability of microfluidics-based scRNA-
seq platform, more than 20 scRNA-seq studies of various organs
from Drosophila, and across a range of developmental time points
and conditions, have been published [4]. Similarly, several other
studies on a wide variety of species across the evolutionary tree
have been published and scRNA-seq is quickly replacing the more
traditional bulk RNA-seq based transcriptomics approach.

The ‘big data’ thus generated from myriad scRNA-seq studies
has tremendous potential to aid in the development of algorithms,
search tools, and repositories that will benefit the advancement of
basic research. Whilst some databases document and compile
scRNA-seq studies in one portal (see Supplementary Table S1 for
examples), most have caveats that limit their use for cross-
species analysis of multiple tissues. These include search databases
that focus on one species or tissue and incorporate weak or no
ortholog gene search capability. Furthermore, certain databases
re-analyze published scRNA-seq data before utilizing the data for
various search algorithms. Although re-analysis may not change
the transcriptomic architecture of cell clusters, it may change the
structure of the scRNA-seq map and the set of top-enriched marker
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genes as compared with the original analysis published by the
authors. Moreover, search databases that feature scRNA-seq data-
sets from multiple species to facilitate a cross-species survey of a
given gene tend to work well for orthologous genes that have the
same name (or keyword) in different species but might not map
orthologs with different names. Altogether, there is a need for com-
prehensive databases that allow users to search genes of interest
across various scRNA-seq datasets obtained from different species
and preserve the outcomes of the original published analyses.

To provide a comprehensive scRNA-seq data mining resource
with the features discussed above, we developed DRscDB (Droso-
phila RNAi Screening Center’s single-cell DataBase), which provides
a simple, user-friendly web search tool. DRscDB allows users to
search a gene of interest and identify not only all of the relevant
datasets expressing this gene but also all of the datasets in which
an orthologous gene from another species is expressed. The infor-
mation about relevant tissues and cell types is summarized at
DRscDB in an easy-to-read table and can be visualized as dot plots,
heatmaps or bar graphs. In addition, DRscDB can also facilitate cell
type (or cluster) enrichment analysis based on a user-provided list
of genes. Specifically, genes on the list are compared to top markers
of various cell types from all datasets across species and the best-
matched cell clusters of relevant tissues are returned. This function
can help users assign clusters when a new scRNA-seq dataset is
obtained and can also help users identify the most relevant cell
type/tissues if a gene list is obtained from another source, such
as a cell-based screen or functional annotation. Altogether, DRscDB
makes it possible for users to mine multiple scRNA-seq datasets
with ease and is unique in its design and use of a robust cross-
species ortholog search feature (Supplementary Table S1).
2. Material and methods

2.1. Standardization of information from the literature

Most scRNA-seq datasets are analyzed and presented differ-
ently in different journals, making it challenging to fetch marker
genes in an automated manner. Hence, we decided to manually
curate published scRNA-seq papers. To optimize the choice of
papers and their metadata for manual curation, we streamlined
our approach based on two major criteria. First, we focused on a
defined set of species and second, we sought to cover most major
tissue types common among these species. To achieve optimal cov-
erage of evolutionarily conserved model organisms ranging from
small invertebrates to larger vertebrates, we decided to include
scRNA-seq studies of tissues from Drosophila melanogaster (fruit
fly), Danio rerio (zebrafish), Mus musculus (mouse), and Homo sapi-
ens (human). Next, we focused on major tissue types that were
analyzed in Drosophila and whose analogous tissues had been stud-
ied in the other species. Applying these criteria, we searched the
published literature and manually curated relevant scRNA-seq
papers. The required metadata, which includes the lists of marker
genes presented by the authors in the respective papers, were col-
lected and stored in Excel files of a standard format along with sup-
porting information specific to each dataset or study. The metadata
and marker gene files include all of the essential details such as
paper title, brief summary, species and tissue type, type of
scRNA-seq method, number of clusters identified, and, impor-
tantly, the list of marker genes along with statistics regarding dif-
ferential gene calling, such as fold enrichment and P values if
available. In cases where information pertaining to the marker
genes were not reported in the supplementary information, we col-
lected the marker genes per cluster that were discussed in the
main text of the paper.
2019
2.2. Data processing pipeline

To understand whether a gene is expressed in each cell type, as
well as the expression scale and level, additional data files, specif-
ically the raw gene-to-cell expression matrix and metadata file, are
needed as input files for the data processing pipeline. The gene-to-
cell expression matrix contains the raw unique molecular identifier
(UMI) counts or read counts, and the metadata file contains bar-
code and cell type annotation information. For most publications
selected, the matrix and metadata files were available from GEO
records associated with the manuscript. In cases where such files
were not deposited in public repositories, we requested the files
from the corresponding author. Next, the matrix and metadata
files were processed using a customized script based on Seurat
[5]. The output includes two files, clusterMetadataTable and
gene2clusterTable. The clusterMetadataTable file is a summary at
cluster level generated from metadata file. The gene2clus-
terTable file is generated by extracting the data from the Seurat
DotPlot function and contains information about the percentage
of cells expressing and average expression levels of each gene in
each cluster (Supplementary Fig. S1). The data processing pipeline
can significantly compress the data. For example, the file size of the
gene2cell expression matrix of the Drosophila blood dataset from
[6] is about 500 MB, but after processing through this pipeline,
the output file for the gene2cluster matrix is about 10 MB. All of
the scripts used for the data processing pipeline for each publica-
tion are stored in GitHub and are available to public (https://
github.com/moontreegy/scseq_data_formatting).
2.3. Data import and synchronization

The gene identifiers used for gene markers and data matrices
from different publications vary in terms of both the source and
the version. We synchronized gene identifiers to the current NCBI
Entrez GeneID and species-specific identifiers such as Mouse Gen-
ome Informatics (MGI) gene identifiers for mouse genes and Fly-
Base gene identifiers for Drosophila genes. Identifiers that cannot
be mapped are excluded. Gene identifiers will be updated period-
ically to reflect updates at FlyBase and other resources.
2.4. Marker gene selection, ortholog mapping and enrichment analysis

The marker genes, as well as associated statistics such as

fold enrichment, percentage of cells expressing the gene, P values
and/or adjusted P values, were usually collected during curation
process from either supplemental file associated with the publica-
tion or GEO. Very often hundreds and sometimes a few thousands
of marker genes were identified in each cluster and full marker
gene lists are reported in all but a small number of publications
that only make available the subset of marker genes that were val-
idated. We selected top 10, 50, 100 and 200 marker genes per clus-
ter based on the fold change, or based on the percentage of cells
that express the gene if fold change is not avaliable, using an
adjusted P value or a P value of 0.05 as a filter. The gene compo-
nents of each gene set are then mapped to other model organisms
using DRSC Integrative Ortholog Prediction Tool (DIOPT) vs8 with a
filter applied to map only high or moderate rank results [7]. DIOPT
is an integrative ortholog mapping tool that counts which of 17 dif-
ferent algorithms predict a given ortholog pair, and use this count
as a score (i.e. the ‘DIOPT score’), which we have previously
demonstrated is indicative of confidence in the ortholog mapping.
In DRscDB, a ‘high confidence’ rank is assigned when at least two
algorithms predict the ortholog pair and the pair has the highest
score among ortholog pairs found when either gene in the pair is
used as the query (i.e. ‘best score’ and ‘best reverse score’).
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A ‘moderate confidence’ rank is assigned to the mapping when at
least two algorithms predict the pair and the pair has the best score
when the search is initiated with one or the other gene in the pair.
Ortholog pairs for which the pair does not have the best score with
either gene in the pair but the prediction is supported by four or
more algorithms are also considered moderate rank pairs (see
DIOPT release information page, https://www.flyrnai.org/DIOPT_
help.html#versions). Enrichment P value of marker gene sets is
calculated based on the hypergeometric distribution. The enrich-
ment strength can be illustrated using either the negative log10
of P value or the fold change at DRscDB website.
2.5. Implementation of the online resource

The DRscDB web tool (https://www.flyrnai.org/tools/sin-
gle_cell/) can be accessed directly or found at the ‘Tools Overview’
page at the DRSC/TRiP Functional Genomics Resources website
(https://fgr.hms.harvard.edu/) [8]. The back end was written using
PHP with the Symfony framework. The front-end HTML pages take
advantage of the Twig template engine. The JQuery JavaScript
library with the DataTables plugin is used for handling Ajax calls
and displaying table views. D3 and Vega-Lite javascript libraries
are used for the graphing (http://idl.cs.washington.edu/papers/
vega-lite/). The Bootstrap CSS framework and some custom CSS
are also used on the user interface. A mySQL database is used to
store the curated information as well as cluster-level statistics.
Both the website and databases are hosted on the O2 high-
performance computing cluster made available by the Research
Computing group at Harvard Medical School.
3. Results

3.1. Literature curation and data process

Single-cell RNA-sequencing (scRNA-seq) provides a powerful
way to study transcriptomes at single-cell level, allowing research-
ers to uncover potential new biological insights not discoverable
using traditional bulk RNA-seq methods. For example, analysis of
scRNA-seq data can reveal rare cell populations, uncover regula-
tory relationships between genes and cells, and be used to trace
the trajectories of various cell lineages [9]. The number of publica-
tions reporting scRNA-seq data is increasing dramatically and thus
far includes more than 20 publications for Drosophila melanogaster.
We selected 18 publications with scRNA-seq datasets for Droso-
phila [4] as well as 29 publications for human, mouse, zebrafish
for our initial manual curation efforts. Information such as tissue,
developmental stage, sequencing method, cell type, and marker
genes were collected from original publications and reorganized
using a standard template file. By design, we use the marker gene
lists provided by the papers and do not reanalyze the datasets, thus
preserving the results of the original analyses done by researchers
with specific relevant expertise. In addition, the data files that had
been deposited by study authors into NCBI GEO were retrieved and
processed to obtain cluster-level statistics such as the percentage
of cells that express a given gene and average expression levels
for the gene within a cluster. We found that for 36% of the publica-
tions (17 of 47), the information publicly available at the time of
our curation was not adequate for data processing. For example,
some data files were missing an annotation file of cell barcodes
used to cluster the cells, and/or missing a cell-gene expression
matrix. For publications in this category, we requested the addi-
tional information from the corresponding authors and in several
cases (4 publications) the information was kindly provided by
the authors. When we were unable to obtain the data, we only
imported the marker genes as extracted from the publication
2020
(Fig. 1). Standardized information was then imported into a mySQL
database. During import, gene symbols and/or identifiers were
mapped and synchronized to common identifiers (Entrez GeneIDs)
and/or species-specific identifiers (e.g. FlyBase FBgn IDs for Droso-
phila genes, MGI IDs for mouse genes). In addition, the top marker
genes (up to 200) were selected and mapped to orthologous genes
of the other species represented in the database using DIOPT
(Fig. 1) [7].

In summary, basic information about experimental design,
sequencing platform, and analysis tool used, and analysis results
associated with the scRNA-seq datasets such as cell types and mar-
ker genes, are captured during the curation stage. Further, detailed
information regarding the percentage of cells that express a given
gene and average expression levels for a gene within a cluster are
captured during a data processing stage. Curated information and
processed data are synchronized and stored in the database. At
the same time, the top marker genes are selected and mapped to
orthologous genes for enrichment analysis.

3.2. DRscDB as an online resource

DRscDB is an online resource built to access the curated infor-
mation and processed data from scRNA-seq publications. When
multiple sample types were sequenced, e.g. different treatment
conditions, genotypes, sex, or developmental stages, the datasets
were processed separately, allowing users to compare gene expres-
sion changes across different samples. For example, the publication
from Tattikota et al. (2020) includes the scRNA-seq datasets for
Drosophila hemocytes from unwounded control, wounded, and
wasp-infested fly larval samples [6], and we processed each
dataset separately as well as jointly, thereby importing 4 datasets
into DRscDB. Upon mining the data in DRscDB, users can easily
compare expression patterns across samples. Currently, DRscDB
covers 90 datasets from 47 publications (Table 1, Supplementary
Table S2).

DRscDB allows users to search a gene of interest using a ‘single
gene search page’. In this case, the input gene and its predicted
orthologs are retrieved along with the number of datasets in which
each gene was found to be expressed. For example, a search with
the human gene GAD1 returns a table including the GAD1 gene
and orthologs such as Gad1 in mouse and fly, and gad1a and gad1b
in zebrafish. There are 24 human datasets in which GAD1 is anno-
tated as expressed, 8 datasets for the mouse ortholog, and 6/7
datasets for each of the zebrafish orthologs, and 28 datasets for
fly Gad1. This information is summarized in an additional column
along with orthologous gene search results. Users have the option
to view detailed information about relevant scRNA-seq datasets for
any of the genes in the summary table. The results of data mining
of tissues and cell types that express a gene of interest are first pre-
sented in a summary table. Users can also view cluster-level statis-
tics as a dot plot, bar graph, or heatmap. With a dot plot, the
percentage of cells that express the gene is represented by the size
of each dot and the average level of expression is represented by
the intensity of the color. Users can quickly survey the level and
scale of cells expressing a gene of interest in all relevant cell types
and across all tissues, based on the publications covered in the
database. In the summary table, information about whether a gene
of interest is a cell-type specific marker is included, and users also
can view marker statistics, which are presented as bar graphs in
which the height of the bar represents the fold enrichment of gene
expression in a cluster as compared to the rest of the cells, and the
color intensity of the bar represents the enrichment P value (Fig. 2).

We selected the top markers for each cluster based on log2 fold
change (log2fc) as well as the adjusted P value or P value to gener-
ate the gene sets used for enrichment analysis. To determine the
number of marker genes that are required for cell cluster
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Fig. 1. Curation and processing of scRNA-seq datasets from the literature. DRscDB is built based on curation of published scRNA-seq literature. During the curation
process, curators extract the information about experimental design, sample information, andmarker genes from each publication, and organize the information in a standard
template. Data wranglers retrieve the data files (cell expression matrix and metadata file) from GEO and calculate the expression statistics of each gene at the cluster level
(Supplementary Fig. S1). Subsequently, data files and annotation files are processed by a software engineer for database upload.

Table 1
DRscDB coverage.

Species Tissue # publications # datasets PMIDs

Drosophila Immune 4 12 32396065[6];32900993[10];32162708[11];32487456[12]
Drosophila Ovary 3 4 31919193[13];32339165[14];33159074[15]
Drosophila Wing disc 3 5 31363221[19];32815271[20];31455604[21]
Drosophila Brain 2 11 31746739[22];29909982[23]
Drosophila Intestine 2 2 31851941[24];31915294[16]
Drosophila Embryo 1 1 28860209[25]
Drosophila eye disc 1 4 30479347[26]
Drosophila Kidney 1 1 32175841[27]
Drosophila Testis 1 1 31418408[28]
Human Kidney 5 14 29870722[29];31506348[30];29980650[31];30789893[32];NA[33]
Human Brain 2 3 31303374[34];31042697[35]
Human Immune 2 2 28428369[36];31413257[37]
Human Intestine 2 5 31753849[18];30526881[38]
Human Testis 2 5 30726734[39];30315278[40]
Mosquito Immune 1 2 32855340[17]
Mouse Kidney 4 4 31689386[41];29794128[42];31118232[43];29622724[44]
Mouse Testis 2 2 31237565[45];29695820[46]
Mouse Brain 1 1 29545511[47]
Mouse Embryo 1 1 30840884[48]
Mouse Immune 1 1 27365425[49]
Mouse Intestine 1 1 29144463[50]
Zebrafish Brain 3 6 29608178[51];31018142[52];29576475[53]
Zebrafish Immune/Kidney 1 1 28878000[54]
Zebrafish Intestine 1 1 32092251[55]
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enrichment analysis, we compared the top 10, 50, 100, and 200
marker genes for Drosophila crystal cell and lamellocyte clusters
as example cell types from three independent Drosophila blood
scRNA-seq studies that provide large number of marker genes
per cluster [6,10,11]. We found that 33–41% of the crystal cell mar-
ker genes overlap among the three studies, with the highest per-
centage (41%) of overlap obtained when using top 10 marker
genes (Supplementary Table S3). We also found that 21–37% of
lamellocyte marker genes overlapped well with the highest per-
cent (37%) of overlap obtained with the top 200 marker genes
(Supplementary Table S3). These results suggest that the number
of marker genes that will be useful to query or compare cell clus-
ters may depend on the cell type, with a range of 10–200 marker
genes per cell type. We also found that the top 100 markers show
slightly better overall overlap with the blood cell analysis. There-
fore, we chose the top 100 as a default setting at DRscDB and users
have to option to decrease or increase the number of top markers
included in a given analysis. In addition, all of the gene sets are also
mapped to other model organisms using DIOPT. When a user
enters a list of genes at the enrichment page, the input genes are
compared with the gene sets built based on the top markers from
2021
all datasets, and the most similar gene sets are returned in a dis-
play that includes statistics, e.g., fold change, P value and adjusted
P value. Users also have the option to enter multiple gene lists,
using the first column to specify the name of the list and the sec-
ond column to specify the gene components of each list. This func-
tion allows users to compare the gene markers for all clusters from
one scRNA-seq study with the gene markers from a different study
from the same or a different species. This then allows users to iden-
tify similar clusters as defined by top markers. The results can be
visualized at DRscDB as heatmap or a dot plot (Fig. 3, Supplemen-
tary Fig. S3).

Given the exponential increase in publications that include
scRNA-seq datasets, it is not practical for one group to manually
curate and annotate all publications. Hence, to further increase
the coverage of DRscDB, we implemented a webpage that makes
it possible for community members to submit information corre-
sponding to studies or publications currently not covered in
DRscDB. To do this, the submitter would fill in information in a
set of template curation files. Participation in this researcher-
driven submission process will expedite our internal paper curation
and import process. At the DRscDB website, under the menu option



Fig. 2. Use of DRscDB for data mining. At the DRscDB search page, a user can enter a gene of interest with or without specifying the tissue of interest, and results are
summarized in a table format listing the number of datasets expressing the gene of interest as well as the orthologous genes. Next, the user can find more detailed
information such as the relevant clusters expressing the gene of interest. The statistics about the percent of cells expressing the gene, as well as the average expression level,
can be visualized by dot plot, bar graph, or heatmap. If a gene is identified as one of the marker genes for any of the clusters, the statistics of fold enrichment as well as P value
are also displayed by bar graph.

Fig. 3. Use of DRscDB for enrichment analysis. At the DRscDB enrichment analysis page, a user can input a list of genes and find the clusters for which the input genes are
significantly enriched among the top 100 marker genes. In addition, at this page, a user can also enter multiple gene lists and compare each input gene list (for example, 15
lists) with every cluster of a selected study (for example, 9 clusters). The enrichment results are visualized by a heatmap, consisting in this example of a 9x15 matrix, with
columns representing each input gene list and rows represents each cluster from the selected study. The darkness of the color represents similarity (-log10 P value or fold
enrichment).
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‘‘Datasets”, a summary page of all the publications imported so far
is dynamically generated from the database, which allows the
researchers to check if a paper has been included (https://www.
flyrnai.org/tools/single_cell/web/summary).
2022
3.3. Applications of DRscDB

Comparing gene expression in cell clusters across various
studies or species is of tremendous importance to validate data
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reproducibility and highlight evolutionarily conserved transcrip-
tomic architecture. DRscDB facilitates these types of analyses by
making it possible for users to perform enrichment analysis for a
set of genes of interest based on scRNA-seq data from the same
or other species. Currently, Drosophila single-cell RNA-seq datasets
cover a wide range of tissues, including the brain, wing disc, intes-
tine, immune or hematopoietic cells, and reproductive system,
some of which are also covered by multiple datasets (Table 1). In
particular, there are four published datasets for Drosophila
myeloid-like immune cells and 48 cell clusters in total [6,10–12].
We systematically compared the top markers (up to 100) of each
cluster with the top markers of every other cluster from three of
the four publications that provided full marker lists and calculated
a similarity score for each comparison, i.e., the negative log10 of
enrichment P value (-log10 P value). Then, we built a 48 � 48 sim-
Fig. 4. Unsupervised hierarchical clustering of enrichment results comparing top ma
top 100 marker genes per cluster from [6], with 2 other published immune datasets [10,1
immune datasets; therefore, it is reasonable to suggest that for newly generated datase

2023
ilarity matrix and performed unsupervised hierarchical clustering.
The clustering results show that blood cell types such as plasmato-
cytes, crystal cells, and lamellocytes from different studies align
quite well with each other (Fig. 4, Supplementary Fig S4a,b), indi-
cating that our mapping algorithm works efficiently. Finally, we
executed a similar strategy with another tissue, the ovary, with
three published scRNA-seq datasets [13–15]. Comparison of the
top markers among all the cell clusters from these three studies
also show that most similar cell types, including germline stem
cells, align and cluster together, with very high similarity scores
(Supplementary Fig. S2).

To further test whether the literature-derived marker genes can
be used to associate cell clusters from different datasets, as well as
test the comparison across species, we started with two scRNA-seq
datasets pertaining to Drosophila blood and intestine [6,16]. First,
rkers from for publications on the Drosophila immune system. Clustering of the
1]. The results reveal that similar cell types tend to cluster together from these three
ts DRscDB can be used to assign cell types.



Fig. 5. DRscDB facilitates comparison of cell clusters across datasets and species. A. Comparison of the top 10 marker genes per cluster derived from Drosophila [6] or
mosquito [17] blood scRNA-seq datasets. B. Comparison of the top 20 marker genes per cluster from the Drosophila gut study by Hung et al., 2020 [16] with published human
intestinal cell clusters [18].
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to facilitate a query of cluster groups and their respective marker
genes, we introduced a gene set query feature that allows users
to simply copy and paste ‘‘cluster_id, gene symbol” into the query
box and choose a published dataset to match query cell clusters. In
order to demonstrate if cluster to cluster matching effectively
works, we simply compared the top ten marker genes of Drosophila
blood dataset with all the marker genes of the same dataset [6] to
test if each cluster maps to its own cluster. As expected, each clus-
ter significantly overlapped with its own cluster (Supplementary
Fig. S3a). Next, we performed a similar task with the Drosophila
intestine dataset [16] and observed a similar tight cluster to cluster
correlation (Supplementary Fig. S3b). These results show that
DRscDB can effectively perform a one-to-one correlation analysis
of query clusters available in various datasets.

Next, to demonstrate the power of this feature across species,
we compared Drosophila blood marker genes [6] with marker
genes derived from A. gambiae (mosquito) blood scRNA-seq [17].
Of note, Drosophila blood cluster ‘PM20 significantly correlated to
‘HC40 in mosquito blood, both of which have been described as pro-
liferating hemocytes that express mitotic marker genes [6,17].
Likewise, ‘PM60 in flies mapped well to HC6 in mosquitoes, and
both clusters are enriched in genes that encode antimicrobial pep-
tides (AMP). In addition, the ‘HC10 cluster identified in the mos-
quito blood study maps to mature crystal cell cluster ‘CC20, and
both express high mRNA levels of prophenoloxidases (PPO), which
are characteristics of crystal cells or otherwise called oenocytoids
[6,17]. Interestingly, ‘HC10 also highly correlated with ‘PM80, a plas-
matocyte cluster that is enriched in peroxiredoxins. Surprisingly,
the mosquito fat body (FBC) correlated with fly ‘LM10, a potential
lamellocyte intermediate cluster, and the mosquito muscle clus-
ters (MusC) correlated with ‘PM6-70, which represents PMAMP

(Fig. 5A). We also queried the Drosophila intestine dataset [16]
against its human counterpart [18]. As expected, the fly intestinal
cell clusters representing enterocytes, intestinal stem cells and
enteroblasts (ISCs and EBs), and enteroendocrine cells significantly
overlapped with the analogous human cell types: enterocytes,
stem/progenitor cells and transiently amplifying cells, and
enteroendocrine cells, respectively (Fig. 5B).

Altogether, DRscDB can efficiently match cell clusters in a query
to those from the published literature from different datasets and
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species, thereby allowing for cross-dataset and cross-species com-
parisons of cell clusters. When a new scRNA-seq dataset is
obtained, researchers typically review the marker genes for each
cluster and as much as possible, assign cell types based on prior
knowledge. DRscDB facilitates comparison of marker genes from
a new dataset to marker genes from any relevant publications
included in the database. Thus, the analyses supported by DRscDB
can help facilitate the process of cell type assignment.
4. Discussion

4.1. Querying genes across datasets and species

DRscDB standardizes and centralizes scRNA-seq datasets for
Drosophila, human, and other common genetic model organisms,
making it possible for users to mine scRNA-seq data and perform
cross-species analyses easily. DRscDB is unique in that it uses the
powerful DIOPT approach to map orthologous genes, such that it
is able to facilitate efficient and robust gene searches across spe-
cies. Furthermore, DRscDB’s cell type enrichment tool allows for
systematic matching and categorization of similar cell clusters
identified in various datasets.

DRscDB was also designed to use information taken from
original publications, thus leveraging the biological expertise of
the submitting scientists and providing a centralized resource
that is complementary to the consortium efforts such as the
Human Cell Atlas (HCA), Mouse Cell Atlas (MCA), Fly Cell Atlas
(FCA) and Single Cell Expression Atlas at EMBL-EBI, which rely
on reanalysis of raw datasets. One reason this is helpful is
because although reanalysis of published scRNA-seq datasets
provides an unbiased perspective of the published data, it may
not replicate results that can only be obtained by detailed man-
ual analysis. As a result, the structure of the scRNA-seq maps
and top enriched genes in these repositories may differ from
those reported in the original analyses. Nevertheless, as we rec-
ognize the value of consortium efforts and re-analyzed data,
DRscDB was designed with the flexibility to receive data and
annotations directly from centralized resources in the future.
Thus, DRscDB preserves and integrates scRNA-seq analyses
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available in published literature, and serves as a flexible and
potentially comprehensive online resource.

4.2. Toward the identification of evolutionarily conserved cell
populations

DRscDB facilitates efficient cell cluster identity and the identifi-
cation of its potential match in other species. We demonstrated its
use by querying cell clusters in DRscDB with the top marker genes
from the studies as the user input, for both Drosophila blood and
intestine datasets, and further compared these with the analogous
tissues in mosquito or human, respectively. Although other such
‘cell assign’ tools are available and help in revealing the potential
true identity of a particular cell cluster in question, most of these
tools have been developed for mammalian tissues. To our knowl-
edge, tools that allow for cross-species ‘matchmaking’ among
query and published cell clusters are limited. Hence, DRscDB
stands out by allowing users to quickly understand the relation-
ships between new cell clusters or clusters of interest in one spe-
cies and clusters from other samples and species available at
DRscDB. We do note, however, that for certain tissues, such as Dro-
sophila blood, most clusters could not be mapped efficiently to
blood datasets of other vertebrate species. We believe that criteria
such as the number of marker genes and/or additional published
datasets may help to streamline cluster matching across diverse
species.

4.3. Community participation and future direction

DRscDB has the potential to be a rich resource of published
scRNA-seq datasets that can be of high practical value to research-
ers, students, teachers, and others. As mentioned, DRscDB relies on
manual curation of the published literature as a means of preserv-
ing the original analyses done by the study authors. Although man-
ual curation has benefits, it also suffers from being time consuming
and labor intensive, such that inclusion of some published datasets
might be delayed or unsupportable. With this in mind, we provide
an option that allows those conducting scRNA-seq studies to
upload relevant information, thus facilitating the addition of more
datasets, which will further enhance ability to search across spe-
cies as supported by DRscDB query tools. Thus, we hope that by
including a mechanism for community annotation, the coverage
and usefulness of the resource will continue to expand.

5. Availability

Code and results from data processing are located at https://gi
thub.com/moontreegy/scseq_data_formatting. The online resource
is available without restriction at https://www.flyrnai.org/tools/
single_cell/web/.
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