

Control of Lipid Metabolism by Tachykinin in *Drosophila*

Wei Song,* Jan A. Veenstra, and Norbert Perrimon*

*Correspondence: rsong@genetics.med.harvard.edu (W.S.), perrimon@receptor.med.harvard.edu (N.P.) https://doi.org/10.1016/j.celrep.2020.02.011

(Cell Reports 9, 40-47; October 9, 2014)

In the originally published version of this article, the Tk-g-Gal4 line that was used does not solely express in Tk EEs, as was originally stated. It does show some expression in the brain that we estimate to be \sim 50 neurons among the >900 Tk neurons in wild-type adult. This residual expression does not appear to affect our conclusion that gut-derived Tk regulates intestinal lipid metabolism, because (1) Tk-g-Gal4 induced Tk deficiency (UAS-Rpr/+; Tk-g-Gal4/+; or Tk-g-Gal4/UAS-Tk-i-JF01818) fails to change Tk mRNA expression in the brain, but diminishes \sim 90% Tk mRNA levels in the gut (Figure 2 in the manuscript); (2) Tk-g-Gal4 induced Tk deficiency does not affect Tk neuronal functions as measured by locomotor activity, olfactory response, and/or weight change (Figure S2 in the manuscript); and (3) TkR99D signaling in the gut plays similar roles of lipid metabolism as Tk-g-Gal4-manipulated Tk expression (Figure 4 in the manuscript).

The authors regret this error and thank Dr. Ilona Grunwald Kadow for indicating to us the expression of Tk-g-Gal4 in some neurons.

