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CG14906 (mettl4) mediates m6A methylation of
U2 snRNA in Drosophila
Lei Gu 1,2, Longfei Wang3,4, Hao Chen1,2, Jiaxu Hong5,6, Zhangfei Shen1,2, Abhinav Dhall1,2, Taotao Lao7,
Chaozhong Liu1,2, Zheng Wang1,2, Yifan Xu1,2, Hong-Wen Tang8, Damayanti Chakraborty1,2, Jiekai Chen9, Zhihua Liu10,
Dragana Rogulja10, Norbert Perrimon8,11, Hao Wu3,4 and Yang Shi1,2

Dear Editor,
While the eukaryotic candidate m6A methyltransferases

belong to multiple distinct methylase lineages, the most
widespread group belongs to the MT-A70 family exem-
plified by the yeast messenger RNA (mRNA) adenine
methylase complex Ime4/Kar4. At the structural level, all
of these enzymes are characterized by a 7-β-strand
methyltransferase domain at their C terminus, fused to a
predicted α-helical domain at their N terminus and
require S-adenosyl-L-methionine (SAM) as a methyl
donor. The catalytic motif, [DSH]PP[YFW], present in
many members of this family, has shown to be critical for
METTL3/METTL4-mediated mRNA m6A methylation1.
The high degree of amino acid sequence conservation
among the predicted N6-methyladenosine methyl-
transferases motivates further explorations into their
potential functional conservation. METTL4 is a member
of the MT-A70-like protein family, which is conserved
during evolution (Fig. 1a)2. Previous studies suggested
that METTL4 regulates DNA 6mA in vivo and therefore
is a candidate DNA 6mA methyltransferase3–5. However,
the enzymatic activity of METTL4 in vitro has not been
demonstrated.
To identify the substrate(s) for METTL4, we purified

His-tagged, wild-type (WT) as well as a catalytic mutant
(DPPW mutated to NPPW) (Supplementary Fig. S1) of
Drosophila melanogaster mettl4 from Escherichia coli
strain BL21 (DE3). In order to unbiasedly identify
potential substrates of mettl4, we performed in vitro

enzymatic assays using various substrates, including both
DNA and RNA with and without secondary structures.
We used deuterated S-adenosyl methionine (SAM-d3) in
the in vitro enzymatic assays in order to identify m6A
mediated by mettl4. Although we detected a weak enzy-
matic activity on DNA substrates composed of previously
published sequence motifs, mettl4 appears to prefer
RNA substrates potentially with secondary structures
(Supplementary Fig. S2). We next performed enhanced
crosslinking and immunoprecipitation (IP) followed by
high-throughput sequencing (eCLIP-seq), which was ori-
ginally developed to map binding sites of RNA-binding
proteins on their target RNAs6, to identify the RNA type
that is targeted by mettl4 in vivo. Since there are no
commercial antibodies available for fly mettl4, we gener-
ated a Drosophila Kc cell line with a FLAG-tagged mettl4
for the eCLIP-seq experiment7. In total, we generated two
biological replicates for IP samples, and their respective
input samples, together with one IP-control and input-
control sample for the quality control and enrichment
analysis8. The two replicates showed a strong correlation
with a Spearman’s correlation coefficient of 0.97, indi-
cating great consistency between the replicates (Supple-
mentary Fig. S3). Thus, we merged the two replicates to
increase the sequencing depth and power for downstream
analyses, which showed that mettl4 captured RNA
molecules, mostly transfer RNA (tRNA) and small nuclear
RNA (snRNA), including U2, U4, and U6atac (Fig. 1b, c).
We next investigated whether the RNAs identified by the

eCLIP experiments are indeed substrates of mettl4 by car-
rying out in vitro enzymatic assays. We synthesized oligo-
nucleotides containing tRNA and snRNA sequences and
various controls, including DNAs with the same sequences
(Supplementary Table S1). The in vitro enzymatic activity
of mettl4 on each candidate substrate and control
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Fig. 1 (See legend on next page.)
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sequences was measured by liquid chromatography with
tandem mass spectrometry (LC-MS/MS). These in vitro
experiments led to the identification of U2 as the best
substrate among all the snRNA subtypes (Fig. 1d). Next, we
wished to identify the adenosine residues in U2 that are
methylated by mettl4. Previous studies documented that the
adenosine at the 30th position of U2 is frequently methy-
lated in vertebrate U2 snRNA9, with a sequence motif of
AA-G as opposed to 29AAAG32 in fly. To identify which
adenosine within the motif is essential for the enzymatic
activity in fly, we generated point mutations and deletions
of adenosine within and close to this motif and measured
the enzymatic activity of mettl4 on these substrates. We
found that when the 29th position adenosine is mutated or
deleted, no m6A methylation was detected by LC-MS/MS,
whereas other point mutations or deletions (26th and 31st
positions) did not affect substrate methylation or only
decreased methylation partially (i.e., the 30th position).
These results indicate that adenosine at position 29 is the
adenosine in U2 that is methylated by mettl4 in fly (Fig. 1d).
In order to better characterize the enzymology of mettl4, we
next investigated the kinetics of mettl4 and determined that
mettl4 was able to methylate U2 with a Michaelis–Menten
constant (Km) of 5.298 μM and a catalytic rate constant
(kcat) of 46.566min−1 (Fig. 1e). In addition, the enzyme is
inhibited by the substrate at higher concentrations (Fig. 1e).
Next, we investigated whether mettl4 catalyzes U2 m6A

in vivo. To accomplish this goal, we generated mettl4
knockout (KO) and rescue cell lines (rescued by either
WT or catalytic mutant of mettl4) (Supplementary Figs.
S4 and S5). Indeed, the U2 m6A level is decreased dra-
matically in the mettl4 KO cells and restored in the wt,
but not in the catalytic compriomised, mettl4 rescued
cells (Fig. 1f; Supplementary Figs. S7 and S8a). Further-
more, the same reduction of U2 m6A level was also seen
in KO flies (Fig. 1g; Supplementary Figs. S6 and S8b). The
low DNA 6mA levels between WT and KO fly cells for
both nuclear and mitochondrial DNA showed no sig-
nificant differences (Supplementary Fig. S9). These find-
ings suggest that it is mettl4 that mediates U2 methylation
in vivo. Interestingly, the U2 m6A level in WT female flies

is significantly higher than that in males, suggesting that
mettl4 might play sex-specific roles (Fig. 1g; Supplemen-
tary Fig. S8b), which will be interesting to investigate in
the future. Given U2 snRNA is involved in pre-mRNA
splicing10, we performed RNA-seq using both WT and
mettl4 KO Drosophila Kc cell lines to determine if RNA
splicing is affected as a result of mettl4 loss. In total, we
identified 2366 transcripts with differential alternative
splicing events, which cover 1771 genes. Gene Ontology
Enrichment analysis suggests that mettl4 affects a broad
set of biological processes, including differentiation,
development, growth, and response to stimulus (Fig. 1h).
We next investigated whether there are any significant
phenotypic differences between WT and KO cells, given
the broad changes in the whole transcriptome caused by
mettl4 KO. Indeed, we observed a significant proliferation
difference between WT and mettl4 KO cells (Fig. 1i;
Supplementary Fig. S10). In addition, we analyzed inde-
pendently generated mettl4 knockdown (KD) cell lines by
RNA interference (RNAi), and both KD cell lines dis-
played enhanced growth/proliferation than control cells
(Supplementary Fig. S11), indicating loss of mettl4 is
associated with enhanced cell proliferation. Although
both KO and KD cell lines show similar proliferation
pattern, genetic rescue experiments are needed to defi-
nitively rule out potential off-target effects.
Since U2 is an essential component of the major spli-

ceosomal complex, which plays an important role in pre-
RNA splicing, loss of mettl4 might have broad impacts
through altered RNA splicing. However, whether the
altered RNA splicing events are regulated by mettl4
through methylation of U2 snRNA or other yet-to-be-
identified substrates, or whether mettl4 regulates splicing
in an enzymatic activity-independent manner, remain to
be determined in the future. In addition, we did not
observe any significant difference during development of
mettl4 KO flies, although we observed altered prolifera-
tion of the Kc cell line lacking mettl4. The reason for the
discrepancy between cell line and whole fly studies is
unclear at this time. Gene expression at the organismal
level is regulated in a spatiotemporal manner and by both

(see figure on previous page)
Fig. 1 CG14906 (mettl4) methylates U2 snRNA in Drosophila melanogaster. a Cladogram of mettl4 in model organisms based on their sequence
similarity, the pink rectangle indicates the MT-A70 domain. b Enrichment analysis of eCLIP-seq data for different RNA types. tRNA and snRNA are
enriched among all RNA types in general and snRNA is the top enriched RNA molecules targeted by mettl4 in vivo. c Enrichment analysis of eCLIP-
seq data for subgroups of snRNA. U2, U4, and U6atac are the top enriched subgroups. d In vitro enzymatic activity is measured by LS-MS/MS using
substrates, including U2, U4, U6atac, and U2, with different point mutations and deletions, and tRNA and DNA with U2 sequences. Results show that
U2 is the best substrate for fly mettl4 and that adenosine at position 29 in U2 is methylated by mettl4. e Michaelis–Menten kinetics of recombinant
mettl4 was determined using U2 probes as substrate by LC-MS/MS analysis. f U2 m6A analysis in WT, KO, and rescued (wt: wild-type mettl4; mut:
catalytic dead mutantmettl4, DPPW→NPPW) cells by LC-MS/MS. g In vivo U2 m6A analysis by LC-MS/MS of WT and KO flies. Error bars indicate mean
± SD (n= 3). h Genes with differential alternative splicing were used for the GO analysis. The top 20 enriched biological processes are shown in the
bar plot. i Growth curves of WT and mettl4 KO cells in a course of 5 days. Error bars indicate mean ± SD (n= 7). Permutation test was used to
determine the significant level of the difference between two groups of growth curves. Statistical significance is determined as: n.s., P > 0.05; *P <
0.05; ***P < 0.001; ****P < 0.0001.
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genetic and environmental factors11,12. This complexity
may explain why we did not observe overt developmental
phenotypes of the mettl4 KO fly.
At the same time, we also identified METTL4 as a novel

methyltransferase for U2 snRNA in human. Human
METTL4 catalyzes Am to m6Am, whereas fly mettl4
catalyzes A to m6A. Although the only difference between
m6Am and m6A is the 2′-O-methyl group on the sugar,
we demonstrated that human METTL4 cannot convert A
to m6A. Future structural studies will provide insight into
how these two highly related enzymes come to possess
different substrate requirements for m6A methylation of
U2 snRNA. Furthermore, since the U2 RNA undergoes
different modifications (m6A vs m6Am), it is possible that
they could have distinct biological functions and sig-
nificances. They may affect the structure and function of
the U2 RNA or even the spliceosome differently, and
require different readers and erasers, as well as a set of
Am writers/readers/erasers. Indeed, while fly cells lacking
mettl4 show an enhanced proliferation rate, human
293T cells do not. Consistently, pathway analysis shows
that cell proliferation genes are affected in response to
mettl4 loss only in fly, but not in human cells (293T).
Together, these findings raise many intriguing questions,
including the origin of the substrate preference, the
structural mechanism that contributes to the recognition
of the 2′-O-methyl group on Am, and the biological
implications of the mechanistic evolution of METTL4.
In summary, we demonstrated that mettl4 catalyzes U2

m6A in fly both in vitro and in vivo. Furthermore, whole
transcriptome profiling revealed that loss of mettl4 broadly
impacts various biological pathways. Lastly, we were able to
observe a significant difference in cell proliferation between
mettl4 normal and deficient fly cells. Our work answered a
long-standing question regarding the enzymatic activity of
mettl4, and thus paved the way for further investigation of
mettl4 functions in different biological settings.
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