Developmental Cell, Volume 47

## **Supplemental Information**

## A Membrane Transporter Is Required

## for Steroid Hormone Uptake in Drosophila

Naoki Okamoto, Raghuvir Viswanatha, Riyan Bittar, Zhongchi Li, Sachiko Haga-Yamanaka, Norbert Perrimon, and Naoki Yamanaka





(A) 20E-dependent inhibition of the cell proliferation in *Drosophila* S2R+ cells. Cell titer was measured after 5 days of treatment with 20E. Values are relative to 20E-untreated (0 ng/ml 20E) cell titer. Two biological replicate measurements are shown.

(B) sgRNA-level CRISPR score distribution for the *in vitro* CRISPR screening. Computed CRISPR score (Log2[fold-change]) for each sgRNA from 20E-treated versus untreated populations is plotted. All sgRNAs targeting *EcR* (red) and *Oatp74D* (blue) are marked with circles. sgRNAs targeting essential genes or having no effect are expected to be near or below zero on the vertical axis, while sgRNAs conferring ecdysone resistance are expected to be higher on the vertical axis.

(C) 20E treatment to cells with mutations on *Oatp74D* or *EcR*. The top scored sgRNA for *Oatp74D* (ACAGCCGAAAAGGCCGCAAC) or *EcR* (GACCGTGAGTATGGTTATCT) from the *in vitro* CRISPR screen was transfected into S2R+ cells. Cells were treated with 20E (15 ng/ml) and cultured for 16 days. sgRNA targeting an intergenic region (AGCGGCTATCGTTTAGTTCC) was used as a negative control. Cells are visualized by fluorescence of GFP encoded by the sgRNA expression vector.

(D) Top ten enriched genes following 20E treatment in the *in vitro* CRISPR screening. Computed CRISPR scores (mean Log2[fold-change] of all sgRNAs targeting the same gene) from each gene for 20E treatment and untreated control are shown as black and gray bars, respectively.



Figure S2. Expression of OATP-Encoding Genes in Drosophila, Related to Figure 2.

Relative expression levels of all *Drosophila* OATP-encoding genes in various tissues and S2 cells, as assessed by qRT-PCR. Tissues were dissected from wandering third instar larvae ( $w^{1118}$ ). For absolute quantification of mRNAs, serial dilutions of plasmids carrying each *Oatp* cDNA sequence were used for standards. After the molar amounts were calculated, transcript levels of *Oatps* were normalized to *rp49* levels in the same samples. Values are shown as percentages relative to the *Ecl/Oatp74D* level in the Malpighian tubule. All values are the means  $\pm$  SD (n = 3).

![](_page_3_Figure_0.jpeg)

Figure S3. Generation of Ec/Mutants Using CRISPR/Cas9 Technique, Related to Figure 3.

(A) Schematic representation of the *Ecl* locus and guide RNA (gRNA) targets. The protein-coding DNA sequence (CDS) and untranslated regions are represented by open boxes and filled boxes, respectively. Neighboring genes are represented by gray boxes. Arrows indicate the orientation of the *Ecl* gene. Each pair of gRNAs was designed to induce double-strand breaks near the *Ecl* translational start and stop sites, respectively. T1 and T2 indicate gRNA target pair-I (pink arrowheads), and T3 and T4 indicate gRNA target pair-II (purple arrowheads).

(B) Sequences of *Ecl* mutations induced by two independent pairs of gRNAs. The wildtype sequence is shown at the top, with the gRNA target sequences in red and the neighboring NGG protospacer adjacent motif (PAM) sequences in green. Deleted residues are shown as dashes. Underlines in the T1 and T2 sequences indicate *Ecl* start and stop codons, respectively. *Ecl*<sup>1</sup> was generated by Target pair-I (gRNAs against T1 and T2) that caused a 3207 bp deletion, including the entire *Ecl* CDS. *Ecl*<sup>2</sup> was generated by Target pair-II (gRNAs against T3 and T4) that caused a 3858 bp deletion, including the 5' untranslated region and almost the entire *Ecl* CDS.

![](_page_4_Figure_0.jpeg)

Figure S4. Detailed Developmental Phenotype of Ec/Mutants and Rescued Animals, Related to Figure 3.

Developmental changes in larval mouth hook and posterior spiracle morphology of control ( $w^{1118}$ ), *Ecl* transheterozygous mutant (*Ecl<sup>1</sup>/EcP*), and *Ecl* transheterozygous mutant rescued by weak ubiquitous expression of *Ecl* (*arm-Gal4* > *UAS-Ecl; Ecl<sup>1</sup>/EcP*). Arrows indicate second instar larval mouth hooks observed in the DM larva. Scale bars, 100 µm.

![](_page_5_Figure_0.jpeg)

Figure S5. *Ecl* Regulates Ecdysone Signaling in a Cell-Autonomous Manner without Disrupting EcR Protein Levels or Localization, Related to Figure 5.

(A) Knockdown efficiency of the two independent UAS-RNAi lines for Ecl and EcR in the fat body at 72 hAH, as assessed by qRT-PCR. Cg-Gal4 > UAS-dicer2 was used as a fat body-specific Gal4 driver. Values are calculated relative to the control level. Each bar represents mean ± SD of three independent sample preparations. \*\*p < 0.01 from Student's t test compared to control. (B, C) Clones of salivary gland (B) and fat body (C) cells expressing Ecl-RNAi #1 or EcR-RNAi #1 with dicer2. hs-flp;; Act>CD2>GAL4, UAS-nlsGFP was used to generate GFP-marked flip-out clones. Flippase activity was induced by 30 min heat shock. Note that flip-out clones are dominant in both tissues under this condition. The salivary gland and fat body from wandering third instar larvae were immunostained for EcR (red), GFP (green) and nuclei (blue). Knockdown of both Ecl and EcR significantly decreases salivary gland cell size in a cell autonomous manner. Knockdown of EcR significantly reduces EcR protein levels, whereas Ecl RNAi does not affect EcR protein levels or its localization. Scale bars, 50 µm.

| Species                 | Protein name / Gene ID | GenBank accession number |
|-------------------------|------------------------|--------------------------|
|                         | OATP1A2                | NP_066580                |
|                         | OATP1B1                | NP_006437                |
|                         | OATP1B3                | NP_062818                |
|                         | OATP1C1                | NP_001139418             |
|                         | OATP2A1                | NP_005621                |
|                         | OATP2B1                | NP_009187                |
| Homo sapiens            | OATP3A1                | NP_037404                |
|                         | OATP4A1                | NP_057438                |
|                         | OATP4C1                | NP_851322                |
|                         | OATP5A1                | NP_112220                |
|                         | OATP6A1                | NP_001275931             |
|                         | OATP1B7 (Pseudogene)   | NP_001009562             |
|                         | Oatp1c1                | NP_001038462             |
|                         | Oatp1d1                | NP_001335015             |
|                         | Oatp1e1                | XP_009299377             |
|                         | Oatp1f1                | NP 998082                |
|                         | Oatp1f2                | NP 001121745             |
|                         | Oatp1f3                | NP 001129156             |
|                         | Oatp1f4                | NP 001074135             |
| Danio rerio             | Oatp2a1                | NP 001083051             |
|                         | Oatp2b1                | NP 001032767             |
|                         | Oatp3a1                | NP 001038653             |
|                         | Oatp3a2                | XP 699020                |
|                         | Oatp4a1                | NP 001297061             |
|                         | Oatp5a1                | XP 017207576             |
|                         | Oatp5a2                | XP 684701                |
|                         | LOC100178044           | XP 018672246             |
|                         | LOC100178047           | XP 018667361             |
|                         | LOC100178826           | XP 018671846             |
|                         | LOC100179137           | XP 002129833             |
|                         | LOC100179346           | XP 009862505             |
|                         | LOC100180583           | XP 002120104             |
|                         | LOC100181309           | XP 018670607             |
| Ciona intestinalis      | LOC100181383           | XP 002129378             |
|                         | LOC100182167           | XP 009860360             |
|                         | LOC100182935           | XP_002120038             |
|                         | LOC100184536           | XP 018669740             |
|                         | L OC101242397          | XP 004227423             |
|                         | L OC101242848          | XP 018668290             |
|                         | 1 OC104266209          | XP_009860177             |
|                         | 1 0C108949902          | XP_018669460             |
|                         | Ecl/Qatp74D*           | NP 648989*               |
|                         | Oatn26F                | NP 609055                |
|                         | Oatp30B                | NP 723463                |
|                         | Oatn33Ea               | NP 609568                |
| Drosophila melanogaster | Oato33Eb               | NP 609570                |
|                         | Oatn58Da               | NP 611657                |
|                         | Oato58Db               | NP 611658                |
|                         | Oatp58Dc               | NP 611659                |
|                         |                        |                          |

Table S2. OATP Proteins Used for Generating the Phylogenetic Tree, Related to Figure 2.

| Bombyx mori            | BGIBMGA002723*     | XP_004932455* |
|------------------------|--------------------|---------------|
|                        | BGIBMGA003667      | XP_012549229  |
|                        | BGIBMGA008669      | XP_012545505  |
|                        | BGIBMGA013485      | XP_012545879  |
|                        | TC034513*          | XP_015832992* |
|                        | TC001718           | XP_967848     |
| Tribolium castaneum    | TC001740           | XP_015836575  |
|                        | TC004793           | XP_972698     |
|                        | GB42865*           | XP_006561855* |
|                        | GB50890            | XP_016770062  |
|                        | GB50891            | XP_016770061  |
| Apis meillera          | GB51165            | XP_006566270  |
|                        | GB55877            | XP_016769799  |
|                        | GB55881            | XP_016769795  |
|                        | ACYPI064961*       | XP_003241873* |
| Acyrthosiphon pisum    | ACYPI008520        | XP_008182668  |
|                        | ACYPI50277         | XP_003246488  |
|                        | PHUM617040         | XP_002433206  |
|                        | PHUM125290*        | XP_002424286* |
| Pediculus humanus      | PHUM454200         | XP_002429870  |
|                        | PHUM502970         | XP_002430869  |
|                        | PHUM616210         | XP_002433182  |
|                        | DAPPUDRAFT_303505* | EFX81434*     |
| Daphnia pulex          | DAPPUDRAFT_46372   | EFX84993      |
|                        | DAPPUDRAFT_54555   | EFX77080      |
|                        | ISCW023852*        | XP_002400770* |
|                        | ISCW000594         | XP_002404592  |
|                        | ISCW000596         | XP_002404594  |
|                        | ISCW006481         | XP_002435666  |
| Ixodes scapularis      | ISCW011144         | XP_002412159  |
|                        | ISCW011146         | XP_002412161  |
|                        | ISCW012022         | XP_002414101  |
|                        | ISCW014692         | XP_002415171  |
|                        | ISCW018349         | XP_002434179  |
| Caenorhabditis elegans | F21G4.1            | NP_509659     |
|                        | F47E1.2            | NP_509531     |
|                        | F47E1.4            | NP_509532     |
|                        | F53B1.8            | NP_001294793  |
|                        | K02G10.5           | NP_508802     |
|                        | Y32F6B.1           | NP_505689     |
|                        | Y70G10A.3          | NP_499267     |

\* (Ecl/Oatp74D subfamily clade proteins)

| Target tissue  | Gal4 driver         | Gene name   | CG number | Stock ID      | Phenotype |
|----------------|---------------------|-------------|-----------|---------------|-----------|
|                | Fkh-Gal4>UAS-dicer2 | Ecl/Oatp74D | CG7571    | NIG: 7571R-1  | 25/25     |
|                |                     |             |           | VDRC: 37295   | 25/25     |
|                |                     | 0-4-205     | CG31634   | VDRC: 2650    | 0/25      |
|                |                     | Oatp26F     |           | VDRC: 109633  | 0/25      |
|                |                     | Oatp30B     | CG3811    | VDRC: 22983   | 0/25      |
|                |                     |             |           | VDRC: 110237  | 0/25      |
|                |                     | Oatp33Ea    | CG5427    | BDSC: 50736   | 0/25      |
|                |                     |             |           | VDRC: 105560  | 0/25      |
| Salivary gland |                     |             |           | VDRC: 42805   | 0/25      |
|                |                     | Oatp33Eb    | CG6417    | VDRC: 100431  | 0/25      |
|                |                     | 0-4-500-    | 0000077   | VDRC: 44122   | 0/25      |
|                |                     | 0atp58Da    | CG30277   | VDRC: 106377  | 0/25      |
|                |                     | 0-4-5004    | 00000     | NIG: HMJ24090 | 0/25      |
|                |                     | Uatp58Db    | CG3382    | VDRC: 100348  | 0/25      |
|                |                     | 0-4-500-    | 000000    | BDSC: 44583   | 0/25      |
|                |                     | Catpoolc    | CG3380    | VDRC: 39469   | 0/25      |
|                |                     | EcR         | CG1765    | BDSC: 9327    | 25/25     |
|                |                     | Ecl/Oatp74D | CG7571    | NIG: 7571R-1  | 25/25     |
|                |                     |             |           | VDRC: 37295   | 25/25     |
|                |                     | Oatp26F     | CG31634   | VDRC: 2650    | 0/25      |
|                |                     |             |           | VDRC: 109633  | 0/25      |
|                |                     | Oatp30B     | CG3811    | VDRC: 22983   | 0/25      |
|                |                     |             |           | VDRC: 110237  | 0/25      |
|                |                     | 0 / 005     | CG5427    | BDSC: 50736   | 0/25      |
|                |                     | 0atp33⊑a    |           | VDRC: 105560  | 0/25      |
| Fat body       | Cg-Gal4>UAS-dicer2  | Optro20Eh   | CG6417    | VDRC: 42805   | 0/25      |
|                |                     | Oatp33Eb    |           | VDRC: 100431  | 0/25      |
|                |                     | 0 / 500     | CG30277   | VDRC: 44122   | 0/25      |
|                |                     | 0atp58Da    |           | VDRC: 106377  | 0/25      |
|                |                     | Oatp58Db    | CG3382    | NIG: HMJ24090 | 0/25      |
|                |                     |             |           | VDRC: 100348  | 0/25      |
|                |                     | Oatp58Dc    | CG3380    | BDSC: 44583   | 0/25      |
|                |                     |             |           | VDRC: 39469   | 0/25      |
|                |                     | EcR         | CG1765    | BDSC: 9327    | 25/25     |

Table S3. Effect of Oatp RNAi and EcR RNAi on Ecdysone-Dependent Developmental Events, Related to Figure 2.

The number of animals (per 25 animals) showed defect in ecdysone-dependent glue-GFP expression in the salivary gland or defect in ecdysone-dependent fat body migration are shown. UAS-RNA/lines from National Institute of Genetics (NIG), Vienna Drosophila Resource Center (VDRC) and Bloomington Drosophila Stock Center (BDSC) were crossed to salivary gland or fat body-specific Gal4 drivers. Sgs3-GFP was used to detect ecdysone-dependent gene expression in the salivary gland and UAS-2xEGFP was used to label fat body cells.

| Target tissue | Gal4 driver | Stock ID    | Phenotype                   |
|---------------|-------------|-------------|-----------------------------|
| Ubiquitous    | Act5C-Gal4  | BDSC: 3954  | Embryonic lethal (100%)     |
|               |             | BDSC: 4414  | Embryonic lethal (100%)     |
|               | da-Gal4     | BDSC: 55850 | Early larval lethal (100%)  |
|               | TubP-Gal4   | BDSC: 5138  | Early larval lethal (100%)  |
|               | arm-Gal4    | BDSC: 1560  | Viable from embryo to adult |
|               |             | BDSC: 1561  | Viable from embryo to adult |

Table S4. Lethality of Ubiquitous Ecl Overexpression, Related to Figure 3.

Ubiquitous Gal4 lines from Bloomington Drosophila Stock Center (BDSC) were crossed to UAS-Ecl.

## Table S5. Oligonucleotides Used in This Study, Related to STAR Methods.

| Primers for qRT-PCR                                           |                     |                                               |                          |  |
|---------------------------------------------------------------|---------------------|-----------------------------------------------|--------------------------|--|
| Gene Name                                                     | CG Number           | Forward (5'-3') Reverse (5'-3')               |                          |  |
| Ecl/Oatp74D                                                   | CG7571              | TGCAGTGCCGCTCTCAACTGTACC                      | TCACAGTAACCGTTGACCGCCTCC |  |
| Oatp26F                                                       | CG31634             | TCAACTCAGCCTGACCAGCGACAG                      | ATGGGCAAGGCGATGAGCAGACAC |  |
| Oatp30B                                                       | CG3811              | GAGGAGGACTTCGATGAGGAGCAG                      | ATCATCACCAGCAGCGAGAGCAGC |  |
| Oatp33Ea                                                      | CG5427              | ATCTACGGAGCTGGTCACGAGGTG                      | TTGTCCACTCCACAGAGTCGCTCG |  |
| Oatp33Eb                                                      | CG6417              | TTGCGTTGGCTTTCGCCTACTGGG                      | TGGAGGGAATCACAGCCACCACAC |  |
| Oatp58Da                                                      | CG30277             | TTGAGACATGACAGAGGAGCGAGG                      | TGGCAAATCTTTGCATGGAGGGGC |  |
| Oatp58Db                                                      | CG3382              | CTACGCTAGTCGAGGACATCGTCC                      | TGTCAGCCGCAAAGCTTCTTCGCC |  |
| Oatp58Dc                                                      | CG3380              | AGAGCGAGAATCCCAGTAGCCTGG                      | TTCGGAGTGGTCTCTTCACCGTC  |  |
| EcR (Common)                                                  | CG1765              | TCAACCACAGCCACAGCTCCTTCC                      | TGATGGGTCCTATGGCCGCACTTC |  |
| E74 (IsoformA)                                                | CG32180             | TGAGACGCGAGGAATACCCTGGAC                      | AACTGCCAGCGTGTAGCCGTTTCC |  |
| E75 (IsoformA)                                                | CG8127              | TCAGCAGGCCAATCTGCACCACTC                      | TGATGTACTCGGGAGTCTGGGGAC |  |
| E75 (IsoformB)                                                | CG8127              | AGCAGCACCAGCACCAGCAACAAC                      | ATTGCCCGCACTGGAGTTGCTCGA |  |
| rp49                                                          | CG7939              | AGCTGTCGCACAAATGGCGCAAGC                      | TTGAATCCGGTGGGCAGCATGTGG |  |
| Oligonucleotides for generating Ec/ target gRNAs              |                     |                                               |                          |  |
| Allele                                                        | Target ID           | Forward (5'-3')                               | Reverse (5'-3')          |  |
| Ecl <sup>1</sup>                                              | Target pair-I (T1)  | CTTCGCCAAAATGACGAAGAGCAA                      | AAACTTGCTCTTCGTCATTTTGGC |  |
|                                                               | Target pair-I (T2)  | CTTCGCCGGACACGACGGTCTAGG                      | AAACCCTAGACCGTCGTGTCCGGC |  |
| Fol                                                           | Target pair-II (T3) | CTTCGTGTGTGTTCGGCACTGATA                      | AAACTATCAGTGCCGAACACACAC |  |
| ECF                                                           | Target pair-II (T4) | CTTCGGATCTGGTGGTGTGGCGCA                      | AAACTGCGCCACACCACCAGATCC |  |
| Primers for screening Ecl CRISPR mutants                      |                     |                                               |                          |  |
| Allele                                                        |                     | Forward (5'-3')                               | Reverse (5'-3')          |  |
| Ecl <sup>1</sup>                                              |                     | ACCAATCTACCTCGACTTCTGG                        | ACGCTCGAAGATGCCACTTAAC   |  |
| Ecf                                                           |                     | TCAGCGCTCTTATCATAGTGCC                        | ACGCTCGAAGATGCCACTTAAC   |  |
| Primers for generating Ec/dsRNA                               |                     |                                               |                          |  |
| Forward (5'-3')                                               |                     | TAATACGACTCACTATAGGGTGGCTGAATGCCAGCAGTGAACAGG |                          |  |
| Reverse (5'-3') TAATACGACTCACTATAGGGTTTAGCTTGGGCTTCTCCTCCGGCT |                     | GGGCTTCTCCTCCGGCT                             |                          |  |