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SUMMARY

There exist similarities and differences inmetabolism
and physiology between normal proliferative cells
and tumor cells. Once a cell enters the cell cycle,
metabolic machinery is engaged to facilitate various
processes. The kinetics and regulation of these
metabolic changes have not been properly evalu-
ated. To correlate the orchestration of these pro-
cesses with the cell cycle, we analyzed the transition
from quiescence to proliferation of a non-malignant
murine pro-B lymphocyte cell line in response to
IL-3. Usingmultiplex mass-spectrometry-based pro-
teomics, we show that the transition to proliferation
shares features generally attributed to cancer cells:
upregulation of glycolysis, lipid metabolism, amino-
acid synthesis, and nucleotide synthesis and down-
regulation of oxidative phosphorylation and the
urea cycle. Furthermore, metabolomic profiling of
this transition reveals similarities to cancer-related
metabolic pathways. In particular, we find thatmethi-
onine is consumed at a higher rate than that of other
essential amino acids, with a potential link to mainte-
nance of the epigenome.

INTRODUCTION

In addition to nutrients, mammalian cells require extracellular

growth factors to grow and proliferate (Conlon and Raff, 1999;

Pardee, 1989; Sherr, 1994; Zetterberg, 1990). Absent such fac-
This is an open access article under the CC BY-N
tors, many types of cells survive in a quiescent, or G0, state.

Re-introduction of growth factors will drive these cells into the

cell cycle. This process, which leads to a change of cell state,

has intrigued researchers from the early days of mammalian

cell culture. Numerous experiments have been performed with

serum deprivation/reintroduction protocols to study the kinetics

of how cells in the G0 state re-enter the cell cycle (Planas-Silva

andWeinberg, 1997; Zetterberg et al., 1995). In recent proteomic

studies, T cell activation was used to characterize, specifically,

nuclear and mitochondrial changes as cells transitioned from

G0 to G1 (Orr et al., 2012; Ron-Harel et al., 2016). While these ex-

periments identified several cellular behaviors, we believed that

a more global search of protein expression could lead to more

complete understanding of this important transition. Today,

many of the obstacles to proteome-wide quantitative mass

spectrometry (MS) have been overcome, but the issues of depth

of proteomic coverage still remain, with some classes of abun-

dant proteins easily measured and other rarer proteins like re-

ceptors, secreted signaling molecules, and transcription factors

under-sampled. However, for many protein families and path-

ways, the coverage is good enough to be confident about mak-

ing solid generalizations. This is particularly true for the very

abundant metabolic enzymes, which can provide comprehen-

sive insights into the state of cellular metabolism.

We have characterized the cytokine-mediated transition of the

pro-B lymphocyte cell line, FL5.12 (McKearn et al., 1985), from a

quiescent state to a proliferative state at the proteomic level.

FL5.12 cells are exclusively dependent on interleukin (IL)-3 for

cell growth and proliferation and can be synchronized in the G0

state by IL-3 removal and induced to proliferate by adding IL-3.

As such, they provide a better controlled experiment relative to

the addition and removal of the complexmixture of growth factors
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Figure 1. The Murine Pro-B Lymphocyte Cell Line, FL5.12, Exclusively Depends on IL-3 for Growth and Proliferation

We synchronized cells at a quiescence/resting state or G0 by growing in media without IL-3 for 36 hr and then released them from G0 into the cell cycle by

re-growing them in the presence of IL-3.

(A) Cell-size distributions of cycling cells in the presence of IL-3 and resting (or G0) cells in the absence of IL-3 for 36 hr, with seven replicates measured using a

Coulter counter.

(B) The proliferation marker, Ki-67, shows that FL5.12 cells in G0 do not express Ki-67 and that the cycling cells sampled at 36 hr express Ki-67.

(legend continued on next page)
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found in serum. We used an FL5.12 cell line that expresses Bcl-2

topreventapoptosiswhen IL-3 is removed for several days (Nuñez

et al., 1990). For analysis, we have used a versatile multiplex

method for quantitative MS that uses tandem isobaric mass

tags that can simultaneously determine the ratio of a given protein

in several samples (Singh et al., 2014; Thompson et al., 2003; Ting

et al., 2011). We found that the predominant proteomic changes

during transition through the cell cycle were metabolic. We

bolstered the proteomic studies with mass-spectrometry-based

metabolomicsanalyses.Collectively, these revealed that interme-

diary metabolism in pro-B cell proliferation bears strong similarity

to cancer metabolism, including major changes in translation

machinery and nucleotide and methionine pathways.

RESULTS

Features of Quiescence and Cell-Cycle Entry
Cells in the G0 phase of the cell cycle are defined by a lack of pro-

liferation (marked by lowKi-67 and highCdkn1b/p27 expression),

reduced cell size, and active autophagy. Reduced metabolic ac-

tivity or flux rates are not always a hallmark of the quiescent state

(Lemons et al., 2010). IL-3-deprived FL5.12 cells meet several of

the qualifications for the G0 state. After 36 hr of IL-3 depletion,

FL5.12 cells cease dividing, the mean cell size decreases, and

there is adecrease in size variation (Figures1Aand1D).Ki-67 anti-

bodystainingdeclines 35-fold, as assayedbyflowcytometry (Fig-

ure 1B). There is also a decrease in RNA content, asmeasured by

acridine orange (AO) staining, another reported characteristic of

the G0 state (Figure 1C) (London and McKearn, 1987).

When stimulated by IL-3, FL5.12 cells resume growth and pro-

liferate. We characterized the kinetics of the quiescent-prolifera-

tive transition by measuring G1 length and entry into S phase

by bromodeoxyuridine (BrdU)-7AAD (7-Aminoactinomycin D)

incorporation and flow cytometry, cell volume by Coulter

counter, and the expression of various cell-cycle markers by

western blot. S phase begins at 8–12 hr for >10% of cells (Fig-

ure 1D). Cell size increases from 350 fL to �550 fL as cells go

through the first cell cycle (Figure 1E). There is asynchrony in

the cell-cycle distribution with time, and this is reflected in the

broadening of the size distributions. We profiled cyclins and cy-

clin-dependent kinases (Figure 1F) (Malumbres and Barbacid,

2005; Murray, 2004; Sherr and Roberts, 2004). Cyclin E begins

to increase at 8 hr, consistent with the BrdU measurements,

thus denoting the G1/S transition. Cyclin A, cyclin B, and Cdk1

increased at 16–20 hr, characteristic of the G2-M phases.

Dynamics of Protein Expression
Using 6-plex tandem mass tags (TMTs), we measured the rela-

tive levels of different proteins at different times during the tran-
(C) An acridine orange (AO) assay distinguishes the resting G0 population from the

RNA content than the cycling population.

(D) A 30-min incubation with BrdU shows how the FL5.12 cells progress into the c

the 20 hr of this study. The G1/S transition occurred between 12 hr and 16 hr fo

(E) Cell size changes after IL-3 stimulation in duplicates.

(F) Western blotting analysis of seven cell cycle markers: cyclins A2, B1, and E1; C

transition can be seen at around 10 hr from cyclin E; G2/M phases from cyclins

rep, replication.
sition fromG0 into the cell cycle (Experimental Procedures) (Ting

et al., 2011). In biological duplicate experiments, we quantitated

43,000 unique peptides corresponding to 6,700 unique proteins;

>4,700 were common to both experiments (Figure S1A). The

relative expression of each protein was defined to be the average

profile of all corresponding peptides from each experiment. Each

temporal profile was normalized by its mean value for the pur-

poses of comparison and visualization. 2,666 proteins show

well-correlated profiles between the duplicates; these reproduc-

ible proteins were the focus for subsequent analysis (Pearson

correlation coefficient, >0.5; Data S1).

Unsupervised hierarchical clustering of the 2,666 protein

abundance changes, using the Euclidean distance as a similar-

ity metric after standardization, showed that duplicate experi-

ments cluster together at each time point and also recaptured

the temporal order, suggesting overall gradual changes of pro-

tein expression over time (Figure 2A). The global expression

pattern yields two different temporal clusters corresponding to

a transition phase from G0 into G1 (0 hr and 4 hr) and another

clear transition from mid-G1 onward into S phase and mitosis

(8 hr to 20 hr). There are two main groups of proteins that

have opposing expression patterns, where one group is upregu-

lated in G0/G1 and downregulated in S/M/G2 and the other

main group exhibits the opposite pattern. For subsequent anal-

ysis, we averaged the expression profiles from the duplicate ex-

periments and performed principal-component analysis (PCA)

to obtain a different global view of the data. The first two prin-

cipal components (PCs) explained 86.9% of the total variation

(Figure S1B). The first two time points (G0/G1 transition) were

clearly distinguished from the remaining time points (Fig-

ure S1B), consistent with the hierarchical clustering analysis.

Moreover, the two PCs identified several individual proteins

whose expression variations make a major contribution to

each PC (Figure S1B).

To identify individual dynamic proteins, we calculated the

maximum fold change (MFC), defined as the ratio of the

maximum level to the minimum level for a given expression pro-

file. The mean value of MFCs of 2,666 protein profiles is �1.53,

and the median is �1.38. There are 240 proteins whose MFCs

are greater than 2. The top two proteins, Nek6 and Phlda1,

have MFCs of approximately 29 and 18, respectively. Nek6 is

serine/threonine-protein kinase or NimA-related kinase, which

plays an important role in mitotic cell-cycle progression and is

also a cancer therapeutic target (Jeon et al., 2010; Meirelles

et al., 2014; Nassirpour et al., 2010). Phlda1, pleckstrin homol-

ogy-like domain family A member 1, is involved in the apoptotic

response (Park et al., 1996; Toyoshima et al., 2004). Nek6 and

Phlda1 were increased 15- and 13-fold, respectively, from

time, t, = 0 hr to t = 4 hr (the highest top two), suggesting that
cycling population by the RNA content. The IL-3-deprived G0 cells have lower

ell cycle from G0 upon IL-3 stimulation. Samples were collected every 4 hr over

r the majority of cells.

dk2, -4, and -6; and Cdc2 (a.k.a. Cdk1). Actin was used as a control. The G1/S

A2/B1 and Cdc2.
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Figure 2. Proteomics Data of Temporal Expression and Highly Confident Individual Proteins

The data are based on Pearson correlation coefficients (rs) between all pairs of peptides from the duplicate experiments.

(A) Unsupervised hierarchical clustering of 2,666 proteins whose expression profiles from duplicate experiments have rs > 0.5.

(B) A representative expression profile from our TMT data. The top second protein from (A), Nfil3, is shown. It is a transcription factor that positively responds to

IL-3. The left panel shows profiles of all peptides detected from our duplicate TMT experiments. The right panel shows their averaged profiles for the protein itself.

Upon the IL-3 activation, the expression level of Nfil3 was highly upregulated as expected. We used averaged profiles for individual proteins in the subsequent

main text.

(C) Temporal expression profiles of the six highly confident proteins with an MFC > 4.

(D) Manually selected confident protein profiles for seven cellular processes.
both mitosis and apoptosis immediately respond to the IL-3 acti-

vation for the transition from G0 into the cell cycle.

We identified 16 highly confident proteins where all pairs of

peptides have Pearson correlation coefficients greater than 0.8

and that suggest that the proteomic data mirror expected

cellular responses. Among these are seven proteins with an

MFC > 4: Fgl2 (or Fibroleukin), Nfil3, Eef2k, Junb, Itm2b, Aen,

and Rrn3. Fgl2, Nfil3, Eef2k, Junb, and Rrn3 were among the

top targets based on PCA and MFC, as described earlier. The

expression profile of Nfil3, a transcription factor limited to

T cells and related cells, shown in Figure 2B, demonstrates

that the data from the duplicate experiments can be very reliable

on the measured peptide level and that the upregulation in G1 is
724 Cell Reports 20, 721–736, July 18, 2017
as expected for a response to the IL-3 activation. Fgl2, with the

highest MFC, 9.2, is a 432-amino-acid transmembrane regulator

in both innate and adaptive immunity. It has a role in the negative

regulation of regulatory T (Treg) cell proliferation and the positive

regulation of B cell apoptosis (Shalev et al., 2008). Our data

confirm that it should be downregulated in G0, reflecting the sup-

pression of apoptosis due to Bcl-2, and highly upregulated in

response to IL-3, peaking at 4 hr of early G1 (Figure 2C). Eef2k

is a kinase that is involved in translational inhibition by suppress-

ing a translation elongation factor, Eef2. Junb, which increases

about 6-fold on going from G0 to G1, is a transcription factor

that is upregulated in response to growth factors; Itm2b is a

broadly expressed membrane protein of unknown function; it



continually decreases �4.5-fold from G0 to G2/M. Aen is an

exonuclease downstream of p53 with a role in amplifying

apoptotic signals; its abundance is the lowest in G0, increases

up to�4.5-fold in mid-G1 and then decreases in the proliferative

state of S/G2/M. Rrn3 is an RNA polymerase I (Pol I)-specific

transcription initiation factor for rDNA. The interaction of Rrn3

and Pol I is essential for rDNA transcription, and they dissociate

upon transcription (Hirschler-Laszkiewicz et al., 2003). Its upre-

gulation by �4.4-fold between G0 and G1 is consistent with a

growth signal by IL-3 or the increasing abundance of ribosomal

proteins. The following downregulation suggests its dissociation

from Pol I upon rDNA transcription as the growth signal dimin-

ishes. In Figure 2D, we illustrate 60 proteins that also give highly

confident patterns, but with smaller MFC, and that illustrate the

regulation of several cellular processes on entering a proliferative

phase: cell cycle, IL-3, B cell receptor, and phosphatidylinositol

3-kinase (PI3K) signaling, autophagy, translation initiation, trans-

lation elongation, DNA replication, and mitosis.

To obtain more global functional insight, we performed func-

tional enrichment analysis by the hypergeometric test using

Gene Ontology (GO) terms (Experimental Procedures). The

most significant terms with a p value < 0.001 include nucleolus,

ribosome, mitochondrion, structural constituents of ribosomes,

ATP binding, translation initiation factor activity, translation,

and rRNA processing, which are mostly upregulated on entry

to the cell cycle (Figure S2). This suggests that translation/pro-

tein synthesis-related proteins play important roles during the

proliferative transition of quiescent FL5.12 cells in response to

IL-3, in agreement with a previous study on T cell activation

entering the first cell cycle (Orr et al., 2012).

Dynamics of Protein Modules
We can produce a narrative for one protein at a time that is useful

in validating our general study of physiological regulation on

entering the cell cycle. However, such tedious narrative building

fails when dealing with poorly characterized proteins or with

proteins where there was no clear expectation of behavior. To

consider the problem in a more objective fashion, we analyzed

the proteomic results in terms of functionally related protein

groups or modules, which includes, but is not limited to, physical

protein complexes. First, based on our previous efforts in other

species (Vinayagam et al., 2013), we built a large repository of

mouse protein modules by systematically compiling known

and predicted modules (Experimental Procedures). We then

applied the COMPLEAT tool (Vinayagam et al., 2013) to analyze

our proteomic TMT data and to generate temporal expression

profiles of modules (Experimental Procedures). We identified

significantly enriched modules based on module scores and

p values (Experimental Procedures). An example of a module,

the condensin complex, and its abundance profile are shown

in Figure 3A.

We prioritized dynamically regulated modules using multiple

filtering criteria (Figures 3B–3E; Experimental Procedures). This

yielded a final list of 821 dynamicmodules, with 311 of them liter-

ature supported (Figure 3E; Data S1). We found that 10%–15%

of all protein modules from the literature are dynamic during

the transition from G0 to the first cell cycle. Unsupervised hierar-

chical clustering of the 311 literature-supported modules clearly
distinguishes the G0/G1 transition from the cell cycle (Fig-

ure S3A). Thus, the behavior of these literature-supported

dynamic modules show behavior consistent with proteomic

changes discussed earlier (Figure 2A).

To search for other characteristic dynamic features during

the cell cycle, we identified modules whose scores peaked at

each time point. The G0 state had the highest fraction of

32% (Figure 3F). The peak modules from 4 hr to 20 hr in Fig-

ure 3F include physical complexes functioning in: IL-3 signaling

(4 hr), transcription initiation (8 hr), ribosome biogenesis (12 hr),

DNA replication (16 hr), and mitosis (20 hr). The module at 0 hr,

the citrate cycle, is a group of functionally related enzymes

to which we pay particular attention in the next section. As

a means to further functionally support the identified modules,

we also built a global functional map of the 311 dynamic

modules by organizing them using GO enrichment (Fig-

ure S3B). From this map, we could manually identify 77 unique

modules as confidence builders, functioning in 15 biological

processes from which we can expect certain expression pat-

terns (Figure S3B).

The Cell-Cycle Entry from G0 Shares Several of the
Hallmarks of Cancer Metabolism
From our global functional map of protein modules, we paid

particular attention to the TriCarboxylicAcid cycle (TCA cycle)

because all four modules show significant coherence of expres-

sion, including the module of citrate cycle (Figure 3F), also

referred to as second carbon oxidation (MC2490). Cancer cells,

a prototype for proliferative cells (Vander Heiden et al., 2009),

repress mitochondrial metabolism in favor of ATP generation

through glycolysis. The observed downregulation of four TCA

modules suggests that FL5.12 cells behave similarly as they

exit the resting state and enter the cell cycle. This observation

drove us to look at other metabolic pathways related to cancer

as well as individual metabolic enzymes. We examined closely

eight metabolic pathways: the TCA cycle, glycolysis, de novo

pyrimidine biosynthesis, de novo purine biosynthesis, pyrimi-

dine salvage, purine degradation, lipid synthesis, and the urea

cycle (Figures 4, 5, and S4A–S4H). The urea cycle was included

in this list of biosynthetic pathways, because it has ties to

nitrogen and nucleotide metabolism and was shown to be

downregulated in some cancer cells (Feun et al., 2008; Phillips

et al., 2013).

We detected all the TCA cycle enzymes, as well as the pyru-

vate dehydrogenase (PDH) complex (Pdhb, Pdha1, and Pdhx;

see Figure 4A). Collectively, their temporal profiles show consis-

tent and statistically significant downregulation during the prolif-

erative transition (p < 0.004; Figure 4B; Table S1). Note that

Pdk1/2/3, the kinase family that inhibits the PDH complex in

the entry to the TCA cycle, is upregulated (Peters, 2003). The

downregulation of the TCA cycle is also supported by an overall

downregulation of component proteins of the electron transport

chain (ETC) complexes (Figure S4I). In contrast, the behavior in

glycolysis is just the opposite (Figures 4C and S4B). Txnip, the

inhibitor of glucose transport, is downregulated, and Slc2a1

(Glut1), the glucose transporter, is upregulated during the G0/

G1 transition. This was previously observed (Wu et al., 2013)

and confirmed by western blotting in our study (Figure 4C). The
Cell Reports 20, 721–736, July 18, 2017 725



Figure 3. Analysis of Multi-protein Modules/Complexes

(A) An example complex, condensin I complex (MC9), is shown to illustrate how the complex abundance profile is derived. Condensin I complex is composed of

five proteins, among which Smc2 (gray) was not detected in our TMT experiments. The relative abundance levels of the component proteins from the TMT data

are color coded at each time point. Then, the COMPLEAT tool generates the complex abundance profile (in black). The x axis indicates the six time points, and the

y axis indicates mean-normalized abundance levels in an arbitrary unit. The black square means that a module score is enriched or statistically significant at a

given time point with a p < 0.01.

(legend continued on next page)

726 Cell Reports 20, 721–736, July 18, 2017



activation of glucose uptake is among the best characterized

features of cancer metabolism (Bauer et al., 2004; Ying et al.,

2012; Yun et al., 2009). Moreover, all the ATP-generating and

rate-limiting enzymes in glycolysis—Hk2/3, Pfkl, Pfkm, Pfkp,

and Pkm2—and Eno3 are also upregulated upon the transition

into the cell cycle, suggesting that the activation of glycolysis

in this context is a highly coordinated process.

All enzymes in the pyrimidine and purine de novo biosynthetic

pathways (Figures S4C and S4D), are upregulated during G0/G1

transition, as expected for cell growth and proliferation. Some

anabolic enzymes in nucleotide biosynthesis—including

rate-limiting enzymes such as Cad, Gart, Adsl, Adss, and

Impdh1/2—increase in G1 and reach maximal levels after the

S phase. The upregulation of each enzyme group is statistically

significant (p < 0.04; Table S1). In the pyrimidine salvage pathway

(Figure S4E), Uprt and Uck2, which convert uracil, uridine, and

cytidine to UMP and CMP, are also upregulated during the G1

phase and then downregulated thereafter. On the other hand,

Cmpk1, Entpd3, and Nme3, which regulate uridine phosphate

levels, are downregulated. In the purine degradation pathway

(Figure S4F),most enzymes are downregulated. The coordinated

up- and downregulation of the biosynthesis and salvage path-

ways, respectively, illustrate how the cells regulate the genera-

tion of new nucleotides for genome duplication. Acetyl-CoA (co-

enzymeA) carboxylase 1 (Acaca), the rate-limiting enzyme in fatty

acid synthesis that converts acetyl-CoA to malonyl-CoA; fatty

acid synthase (Fasn); and HMG-CoA synthase (Hmgcs1) are

upregulated in the G1 phase and would seem to accelerate lipid

biosynthesis, presumably to support biomass generation. In

addition, we find that a cytoplasmic fatty acid binding protein,

Fabp5, is upregulated in the proliferative state of G1 to S (Fig-

ure S4G). Fabp5 has been shown to be highly upregulated in hu-

man breast cancers and is a prognostic marker and a potential

therapeutic target (Levi et al., 2013; Liu et al., 2011).

The canonical urea cycle consists of five enzymes, but not

all five enzymes are necessarily expressed in all cell or tissue

types (Morris, 2002). We detected three enzymes: carbamoyl

phosphate synthase 1 (Cps1), argininosuccinate synthase

(Ass1), and argininosuccinate lyase (Asl), which are all downre-

gulated upon IL-3 activation (Figure S4H). In particular, the

rate-limiting enzyme Cps1 exhibits a dramatic 4.8-fold decrease

in its abundance during the first 4 hr of the G0/G1 transition. The

downregulation of the urea cycle presumably favors the use of

nitrogen for biosynthetic purposes of cell growth over the excre-

tion of urea. The downregulation of the three enzymes as a group

is statistically significant (p < 0.02; Table S1).
(B) A distribution of coefficient of variations (CVs) of temporal profiles of the 3,

modules. The top twomodules, formaldehyde assimilation, xylulose monophosph

(C) A distribution of p values for expression coherence of component proteins in 3

modules. The top two modules, BRCA1 B complex (MC2566) and BRCA1-BARD

(D) Scatterplots of fold changes of module scores at the adjacent time steps for 3,

of 1.1 and 0.9 are chosen for upregulation (in blue) and downregulation (in red), re

the top up-/downregulated modules (indicated by asterisks).

(E) The final list of 821 dynamic modules is obtained from the union of the three se

whichmore than 50%of whose their component proteins have the TMT expressio

on the 311 literature-supported modules (confidence score > 10) in this study.

(F) The sector plot represents the fraction of modules whose scores become the

points.
Correlation of Metabolite Levels with Enzymes
We were interested in whether the very clear changes in meta-

bolic enzymes were reflected in their metabolites. Using a gen-

eral metabolomics platform (Yuan et al., 2012), we detected

291 metabolites at the six time points in biological triplicates

and obtained a filtered list of 155 metabolites for subsequent

analysis (Experimental Procedures; Data S1). Unsupervised hier-

archical clustering revealed that the data are reproducible and

that the metabolomic profiles are similar between neighboring

time points (Figures S5A and S5B). However, unlike the global

proteomic changes that show significant changes at the G0/

G1 transition (Figure 2A), the global metabolomic changes are

seen as cells begin to enter S phase (t = 12 hr onward). 106 me-

tabolites show coefficients of variation (CVs) less than 0.4 at all

time points, which we consider as confidently measured.

In order to make a comparison between protein enzymes and

metabolites, wemapped all confidentlymeasuredmetabolites to

the eight metabolic pathways discussed earlier. The vast major-

ity of enzymes show consistent patterns, but this is much less

true for their metabolites. The fluctuation of metabolites is also

greater than that of enzyme levels (MFC = 7.2 versus 4.3, respec-

tively). Enzymes that are consistently downregulated in the TCA

cycle showed variable metabolite patterns (Figures 4A and 4B).

Some metabolites such as citrate, isocitrate, alpha-ketogluta-

rate, fumarate, and malate are upregulated during the G0-

G1 transition. In glycolysis (Figure S4B), the proteomics data

showed that the abundance of the glucose transporter (Glut1) in-

creases and that the profiles of rate-limiting enzymes such as

Hk2/3, Pfkl/m/p, and Pkm2 are suggestive of increased glyco-

lytic flux. This is not altogether surprising, as we would expect

to have seen greater correlations of enzyme level withmetabolite

flux, since enzymes would increase the rate of the reactions.

A closer correlation between enzymes and their metabolites

can be found in pathways other than sugar metabolism. In the

de novo pyrimidine biosynthesis pathway (Figure S4C), the en-

zymes are upregulated, presumably in response to the increased

demand for nucleotides during cell growth and proliferation. The

final product, UMP, is upregulated as the cells pass through

the cell cycle, while dihydroorotate is consumed as expected

for pyrimidine synthesis during cell growth. Similar trends are

observed for the purine de novo pathway (Figure S4D). The 12

enzymes and the end products, AMP and GMP, are consistently

upregulated after entry into the cell cycle. In the pyrimidine

salvage pathway (Figure S4E), the anabolic enzymes, Uprt and

Uck2, are upregulated during G1, while the catabolic enzymes,

Cmpk1, Nme3, and Entpd3, are downregulated, as expected.
177 significant modules. We chose a threshold of 0.1 to obtain 363 dynamic

ate pathway (MC3130) and centralspindlin complex (MC1652), are highlighted.

,177 significant modules. We chose a threshold of 0.01 to obtain 1,086 dynamic

1-UbcH7c complex (MC2259), are highlighted.

177 significant modules. Based on the histogram of all fold changes, thresholds

spectively. The numbers of up-/downregulated modules are shown, along with

ts of dynamic modules from (B), (C), and (D). We retained only those modules in

n data, and thenwe clustered to generate non-redundantmodules. We focused

maximum at each time point. Example module profiles are shown at all time

Cell Reports 20, 721–736, July 18, 2017 727



Figure 4. Downregulation of the TCA Cycle and Upregulation of Glycolysis

(A) Schematic representation of the TCAcyclewith temporal profiles of enzymes andmetabolites detected. Enzymes are indicated in blue (average), with duplicates

in black, and metabolites are indicated in red (average), with triplicates in black. The x axis indicates the six time points, and the y axis indicates mean-normalized

abundance levels in an arbitrary unit. The number in the parentheses next to each molecule name shows the maximum fold change (MFC) over the 20 hr.

(B) The average profiles of all 16 enzymes and metabolites in the TCA cycle. The enzyme profiles show a statistically significant coherent downregulation

(p < 0.004), unlike the metabolite profiles (p < 0.389).

(C) Upregulation of glycolysis was observed through downregulation of Txnip and upregulation of Slc2a1 from the proteomics data and high release of lactate

from the metabolomics data. Western blotting shows consistent expression patterns of Txnip and Slc2a1.

728 Cell Reports 20, 721–736, July 18, 2017



Correspondingly, the upstream metabolites, uracil, uridine, and

cytidine, are downregulated, and the downstream metabolites,

UMP, UDP, UTP, CMP, CDP, and CTP, are upregulated over

time. In the purine degradation pathway (Figure S4F), the en-

zymes are downregulated, and the metabolites show a sharp

decrease in their abundance during the G0/G1 transition. This

implies that the degradation pathway is not activated, favoring

purine synthesis for cell growth. The eight metabolites detected

in this pathway are downregulated in a statistically significant

fashion (p < 0.003; Table S1). In the urea cycle (Figure S4H), car-

bamoyl phosphate levels exhibit a large gradual decrease

(MFC = 5.4), presumably reflecting the major downregulation

of Cps1. This may also be related to increased pyrimidine syn-

thesis, which consumes carbamoyl phosphate. We also observe

corresponding decreases of ornithine and urea, possibly reflect-

ing the use of free nitrogen for biosynthetic purposes.

Despite some expected correlations, the changes in the rela-

tive abundance of enzymes and metabolites are not easily ex-

plained. To search for explanations, we looked for correlations

between enzymes andmetabolites in each pathway. We first ob-

tained average enzyme and metabolite time profiles (Figure 5A).

The TCA cycle, glycolysis, and lipid synthesis showed no

obvious correlations between enzyme and the corresponding

metabolite levels, while other pathways show either positive or

negative correlations. To better quantify these relationships,

we calculated absolute Pearson correlation coefficients for all

pairs between enzyme abundance profiles and metabolite

abundance profiles and their mean value in each of the seven

metabolic pathways, excluding lipid synthesis, in which only

one metabolite (citrate) was measured. For each pathway, we

performed a statistical significance test for the mean value by

random sampling of enzymes and metabolites (Experimental

Procedures). The correlations between enzyme and metabolite

profiles are, overall, better than expected by chance (p < 0.09),

except for the TCA cycle and glycolysis (p > 0.4) (Figure 5A).

This was expected due to large variation in metabolite abun-

dance considered earlier. The most likely explanation is that

metabolites in these pathways are also acted on by enzymes

in other pathways, which have their own dynamics (Ward and

Thompson, 2012). In contrast, metabolites in nucleotide meta-

bolism are more restricted to their specific pathways and, as

such, exhibit correlations.

We also looked for cross correlations between enzyme pro-

files in one pathway and metabolite profiles in another pathway

to understand inter-relationships. Thismodular cross-correlation

analysis generated an asymmetric correlation matrix of the eight

pathways (Figure 5B). The enzymes in the TCA were strongly

correlated to the metabolites in the urea cycle, but those en-

zymes were negatively correlated with metabolites in glycolysis

and TCA. The enzymes in those cycles were negatively corre-

lated with TCA metabolites and glycolysis metabolites. The me-

tabolites in glycolysis and the TCA cycle are positively correlated

with the enzymes in the pyrimidine and purine de novo pathways,

while they are negatively correlated with the enzymes in the

purine degradation and the pyrimidine salvage pathway. For a

further global insight, we paid particular attention to those

cross-correlations that are better than either of the two within-

pathway correlations. As shown in Figure 5C, the enzyme pro-
files in glycolysis have higher correlations with the metabolite

profiles in all the other six pathways than those in glycolysis itself.

This, again, supports the fact that glycolytic intermediates are

used as precursors for several other metabolic pathways,

among which are nucleotide and amino-acid biosynthetic path-

ways. On the other hand, the measured enzymes in nucleotide

metabolism and the urea cycle do not show such high cross-

correlations, implying that those enzymes are specific to their

pathways. We conclude that metabolite dynamics show more

complex patterns than enzyme dynamics and that nucleotide

metabolism is a more specialized process than others showing

correlated dynamics between enzymes and metabolites.

Extracellular Metabolite Profiling Underscores
Proliferative Metabolic Changes
Another very useful perspective of metabolic changes is re-

vealed in how metabolites are consumed from and released

into the growth medium. The metabolite levels in the control

fresh media were used as a reference for all time points. Unsu-

pervised hierarchical clustering again revealed that the data

are reproducible and that the neighboring time points have

similar profiles, except for t = 0 hr (Figure S5C). It is reasonable

that the abundance levels of extracellular metabolites in the me-

dia at t = 0 hr, which is the G0 state after the 36-hr IL-3 depriva-

tion, are similar to those at t = 16 hr and 20 hr rather than t = 4 hr,

in accordance with longer consumption of/exposure to the

extracellular media. By dividing by the control media metabolite

levels, we obtained a final list of 173 normalizedmetabolite levels

for all time points (Figure S5D; Data 1). As a measure of the dy-

namic range of abundance levels, we calculated the MFC as

described earlier. There are 44 metabolites with an MFC greater

than 4, among which 11 metabolites have an MFC greater than

10. The top two dynamic metabolites are lysine (Lys) and methi-

onine (Met), which showed an MFC > 110 and an MFC > 50,

respectively. Both metabolites were consumed from the media

by the cells, especially at the G0 and S/G2/M phases. Three

other amino acids—phenylalanine (Phe), valine (Val), and trypto-

phan (Trp)—show a similar pattern of rapid consumption over

time, meaning that they were depleted from the media as the

cells entered the S phase.

Extracellular levels of pyruvate and lactate increased during

the first cell cycle (Figure 6A), which provides clear support for

upregulation of glycolysis during the proliferative transition and

functionally validating the proteomics data discussed earlier

(Figure 4B). Interestingly, we also observed that lactate in the

media was consumed by the cells in G0. This likely reflects an

effort by these cells to obtain and utilize non-glucose carbon

sources, since glucose uptake is downregulated through

Txnip-dependent repression of glucose transporter expression

in G0, as discussed earlier.

Amino-Acid Consumption as a Function of the Cell Cycle
The proliferative transition accompanies the upregulation of

translation and ribosome biogenesis (Figures 2D, 3F, S2, and

S3B), suggesting correlated changes in amino-acid uptake,

biosynthesis, and utilization. To quantify amino-acid consump-

tion, we converted the normalized relative values into absolute

concentrations at each time point based on the media
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Figure 5. Correlation between Enzymes and Metabolites for Each Pathway and Cross-correlations among the Pathways

(A) Average abundance profiles of all enzymes and metabolites for eight pathways detected in our experiments. Enzyme profiles are indicated in blue, and

metabolite profiles are indicated in red. All abundance levels are normalized to their mean values over the 20 hr. The average values of absolute Pearson cor-

relation coefficients between enzymes andmetabolites (jrj) and p values (p) are also shown. NA, not available for lipid synthesis because it has only onemetabolite

measured (citrate).

(B) A heatmap of enzyme-metabolite cross-correlations. Notable correlation patterns are highlighted in the black and cyan boxes. E_ represents enzymes in rows,

and M_ represents metabolites in columns.

(legend continued on next page)
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formulation (Experimental Procedures; Figure S6A). The initial

amino-acid concentrations vary significantly from as high as

1.15 mM (Arg) to 24.5 mM (Trp). Perhaps among the most inter-

esting observations was the correlation between uptake and

excretion among essential amino acids (EAAs) and non-essential

amino acids (NEAAs; Figure 6B). Like alpha-ketoglutaric acid

(aKG), Glu was released from cells (0.39 mM in G0 and 0.16–

0.37 mM in the first cell cycle; Figure S6A), suggesting a large

role for Gln in nucleotide biosynthesis and the release of Glu.

Studies in cancer cell lines support this interpretation (Jain

et al., 2012; Marin-Valencia et al., 2012). We also observed

that the resting population (36 hr without IL-3) and the prolifer-

ating population in the late G1 phase (8 hr–12 hr) consumed

amino acids to a similar degree.

Focusing on the ninemeasured EAAs, we calculated the differ-

ence in amino-acid consumption at two adjacent times to obtain

the consumption rate in 4-hr intervals. In addition, we used the

relative frequency of EAA abundance in proteins to normalize

the uptake of a specific EAA to the rate of protein synthesis,

assuming no other potential functions of these amino acids.

For this purpose, we used the evolutionarily observed fre-

quencies from a previous study (King and Jukes, 1969), which

turns out to remain relatively constant, regardless of the biolog-

ical context (Figure S6B). The normalized consumption plot

revealed that Met (whose observed frequency in proteins is

1.8%) was consumed more than the other eight measured

EAAs (whose average frequency in proteins is 4.9%) by about

2-fold during the late-G1 to S phase (8 hr–16 hr; Figures 6C

and S6C–S6E). Met and the average of the other EAAs were

consumed most during the late G1 and S phases (8h – 12h),

the peak time when protein synthesis occurs. However, Met

was consumed more at the G1-S phase (8 hr–12 hr) than at the

G0-G1 phase (0 hr–4 hr) by about 12-fold, compared to 5.6-

fold, on average, for the other amino acids. Met consumption

becomes even higher than the other EAAs by about 4-fold if

we exclude the conditional amino acid, Arg, whose consumption

is highest at the early G1 phase (4 hr–8 hr; Figures S6D–S6E). The

early response of Arg uptake to IL-3 activation is supported by

the fact that the arginine metabolism is related to the down-

stream production of metabolites such as nitric oxide and poly-

amines that have an important role in cell growth and prolifera-

tion (Peranzoni et al., 2007; Satriano, 2004).

Met constitutes the primary metabolic input for S-adenosyl-

methionine (SAM) biosynthesis. SAM is the cofactor for methyl

transfer reactions required to establish the epigenetic methyl

marks on nascent DNA and histones (DNA and histone

methylation) (Shyh-Chang et al., 2013; Varela-Rey et al., 2014).

The peak consumption of Met (G1-S phase) closely tracks with

the observed patterns in nucleotide biosynthesis, providing a

rationale for both its relative increased rate of consumption

and the cell-cycle position at which this occurs. Furthermore, a

pathway analysis of metabolites with an MFC > 4 shows that
(C) The network diagram shows cross-correlation inter-relationships. The nodes

enzymes in pathway 1 have higher correlations with metabolites in pathway 2 tha

correlations for this network for simplicity. Using this representation scheme, we

located at the top of the structure connecting to all the other pathways.

See also Table S2.
two downstream metabolites, SAM and S-methyl-5-thioadeno-

sine, exhibit intracellular abundance patterns that track 4 hr

behind that of Met (Figure S6F). The importance of Met meta-

bolism was also supported by the protein expression profile of

Dnmt1, the major DNA methyltransferase for CpG cytosines to

maintain the methylation pattern during replication (Figure 2D),

which peaks during the S phase following highMet consumption

during G1. There is also elevated expression of other Met-

consuming epigenetic enzymes, including methionine synthase

(Mtr) peaking at t = 12 hr (G1-S phase); SAM synthetase isoform

type-2, Mat2a, peaking at t = 8 hr (mid-late G1 phase); lysine

methyltransferase, Smyd2, peaking at t = 12 hr; and arginine

methyltransferase, Prmt7, peaking at t = 12 hr, with MFCs be-

tween 1.4 and 3.8 (Figure 6D). Moreover, 1-methylnicotinamide

(1MNA), which was recently reported to play a role as a methyl-

ation sink after obtaining the methyl group from SAM in the Met

cycle in tumor cells (Ulanovskaya et al., 2013; Ye et al., 2017), is

highly secreted in our system, with more than 16-fold increase in

the media from t = 12 hr on (Figure 6D). The abundance of its

precursor metabolite, nicotinamide, in the media is reduced as

well as its intracellular abundance, as expected (Figure 6D).

We further correlatedMet consumption with the levels of five his-

tone tri-methylation marks: H3K4me3, H3K9me3, K3K27me3,

H3K36me3, and H3K79me3 (Figure 6E). The peaks of intracel-

lular Met and SAM at 4 hr and 8 hr overlap with the peaks of

the five tri-methylated histones at 12 hr, suggesting that Met

was also consumed for histone methylation through SAM.

DISCUSSION

Ourmodel system of FL5.12 cells in response to IL-3 is, perhaps,

a superior model for the G0/G1 transition to the more common

serum-starvation and refeeding experiments that carry with

them the complexity of signals in serum and the concerns of syn-

chronization and re-activation (Cooper and Gonzalez-Hernan-

dez, 2009). While there still exists a significant fraction of cells

that loses synchrony in our system along the cell cycle, a signif-

icant sub-population of cells remarkably gave rise to major

known characteristics and features of each cell-cycle phase,

as evidenced in Figures 1F and 2D. Therefore, our study im-

proves a molecular understanding of cell cycle in a more quanti-

tative way, despite potential limitations and caveats regarding

intrinsically incomplete synchrony in our system such as difficult

interpretations of metabolite abundance profiles discussed later.

Dynamicity of the functional protein modules registered unam-

biguously in our proteomic measurements. Enzyme abundance

profiles revealed many aspects of cellular metabolism whose

regulation by the cell cycle has previously not been as well

appreciated. The metabolite profiling was more difficult to inter-

pret. Whereas the proteomic data registers the enzyme levels,

which would be expected to correlate with the flux through the

pathways, steady-state metabolite concentrations can take
represent pathways, and a link from pathway 1 to pathway 2 is established if

n with metabolites in pathway 1 itself, on average. We took absolute Pearson

built a hierarchical structure of pathway relationships. Note that glycolysis is
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Figure 6. Media/Extracellular Metabolite Profiling and Methionine Metabolism

(A) Temporal profiles of lactate and pyruvate.

(B) Average normalized consumption rates of essential versus non-essential amino acids (EAAs versus NEAAs). The consumption of EAAs is correlated with

upregulated protein profiles involved in translation.

(C) Normalized consumption rates of Met and the other eight essential amino acids. The numbers in the legend represents the relative frequency and the fold

change of the consumption rates at 8 hr–12 hr and 0 hr–4 hr.

(D) Protein and metabolite profiles involved in Met metabolism.

(E) Intracellular levels of five histone tri-methylationmarksweremeasured usingwestern blot and quantified by normalizing to tubulin levels. The normalized levels

were compared with intracellular abundance patterns of Met and SAM in an arbitrary scale for simplicity with MFC values in parentheses.
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high or low values under conditions of high flux. For such rea-

sons, steady-state metabolite levels are hard to relate to enzyme

levels. In addition, numerousmetabolites in central carbonmeta-

bolism can be substrates/products of multiple reactions in inde-

pendent pathways, which can confuse any analysis based solely

on the enzyme concentrations of the core pathways. Experi-

mental measurement of flux using labeled substrates would

help clarify these issues, as well as using better synchronized

cell populations.

The changes of metabolic state in the G0-G1 transition in the

pro-B lymphocyte line invite a comparison to cancer. Although

there have been several studies of gene expression, proteomics,

and metabolism in proliferation and quiescence (Coloff et al.,

2016; Lemons et al., 2010; Valcourt et al., 2012; Venezia et al.,

2004), a quantitative description of the proteome of G0 cells

and their transition into the cell cycle has been generally lacking.

Our proteomic survey shows that they are remarkably similar to

recent studies of the G1 state in the cancer metabolism litera-

ture, where the cells are in a constant proliferative state (Mu-

ñoz-Pinedo et al., 2012; Schulze and Harris, 2012; Wheatley,

2005).

The metabolic profiling of extracellular metabolites revealed

that Met consumption dramatically increases during the G1

phase compared to other EAAs. This would not be expected

if all EAAs, including Met, were consumed only for protein syn-

thesis. In that case, the amount of each EAA should reflect its

relative abundance in the proteome. A similar observation was

made for L-arginine in a recent proteomics and metabolomics

study of activated human naive T cells (Geiger et al., 2016). An

explanation for the high consumption of Met might be that it

has additional functions, such as a source of methyl groups

for protein methylation, including epigenetic marks (Waterland,

2006). Alternatively, highly proliferative cells could drain methyl

groups from the Met cycle into 1MNA, decreasing histone/

protein methylation (Ulanovskaya et al., 2013). Both appear

to happen. We find that extracellular nicotinamide and 1MNA

are anti-correlated with intracellular nicotinamide and 1MNA

(Figure 6D), which could lead to a decrease of histone/protein

methylation, despite higher Met intake. However, the prote-

omics data also support increased intracellular Met use. Mtr,

an enzyme involved in Met synthesis, peaked at G1-S (Fig-

ure 6D), and the major DNA methyltransferase for replication,

Dnmt1, as well as its interacting protein, Dmap1, for transcrip-

tional repression, are upregulated during S phase (Rountree

et al., 2000) (Figure 2D). These three upregulated proteins

have each been investigated as therapeutic targets in cancer

(Cheray et al., 2013; Tang et al., 2008). We also observed

several other upregulated methyltransferases such as Dot1l,

Prmt3/5/7, Smyd2, Ezh2, and Dnmt3b (Figures 6D and S7A).

On the other hand, we observed diverse patterns of seven his-

tone demethylases: Kdm1, Kdm3a, Kdm3b, Kdm4a, Kdm5b,

Kdm5c, and Kdm6b (Figure S7B). Although we cannot attribute

histone specificity of the individual methylating enzymes, the

five histone trimethylation marks showed a temporal correla-

tion with the levels of Met and SAM in their peak abundance

levels (Figure 6E). A recent study also showed that histones

could serve as a methylation sink (Ye et al., 2017), in addition

to 1MNA. Moreover, the upregulation of Met and SAM from
the mid-G1 phase is correlated with the downregulation of

the two protein modules, SIRT1-LSD1 complex (MC289) and

CtBP core complex (MC1067), which have roles in histone de-

methylation to repress target genes (DNA methylation in Fig-

ure S3B). We also note that homocysteine, a metabolite in

the Met cycle, shows an opposite regulation pattern to Met

and that the upregulation of homocysteine is accompanied

by downregulation of glutathione peroxidase 1, Gpx1, a situa-

tion found in hyperhomocysteinemia (Figure S7C) (Handy et al.,

2005). This suggests an additional demand for Met, which con-

tributes to the interpretation of Met levels. The importance of

Met and SAM for growth seems indisputable; a recent study

reported that depletion of either Met or SAM induced G1

cell-cycle arrest in FL5.12 and its derivative cells (Lin et al.,

2014).

The metabolomic and related proteomic map of IL-3 activa-

tion is summarized in Figure 7. It bears strong resemblance to

features attributed to cancer cells. Based on our results outlined

in this model, we suggest that IL-3-mediated activation of the

cell cycle is similar to cancer in several important ways as fol-

lows and sheds light on cancer metabolism. Modules and pro-

teins that are highly abundant in G0 are then abundant again

from the S phase onward (Figure 7A, purple and blue bars, indi-

cating ‘‘modules’’ and ‘‘proteins,’’ respectively). These changes

offer clues about how cancer cells may adapt in nutrient-

deprived states (G0) and how they progress after tumorigenic

transformation (S phase onward). Dynamic changes in intracel-

lular metabolite levels are evident in G0, early G1, S, and G2/M

phases (MFC > 2.49; Figure 7A, yellow bars, ‘‘intra’’). These

results suggest that metabolic activity is most evident during

these stages of the cell cycle. These cells are the most avid

for extracellular nutrients (i.e., uptake) in early G1, S, and

G2/M phases (Figure 7A, green bars, ‘‘extra in’’). On the other

hand, metabolite release occurs mostly in G0 and G2/M phases

(Figure 7A, red bars, ‘‘extra out’’). These results parallel the

catabolic (nutrient breakdown for energy) versus anabolic

(nutrient capture for biosynthesis) phases of the cell cycle.

Based on this, we can hypothesize a potential relationship be-

tween our model and cancer studies: cancer adaptation occurs

in G0 (e.g., Eef2k and Eif4e3), oncogenic transformation in G0/

G1 (e.g., Nek6 and Phlda1), and cancer progression during the

first cell cycle (e.g., Rrm2). Among cancer types, our study will

be immediately relevant as a tool to understand underlying

molecular mechanisms of acute myeloid leukemias (AMLs),

which possess abnormalities of the IL-3 receptor alpha chain,

IL-3Ra, or CD123 (Muñoz et al., 2001; Steelman et al., 2004;

Testa et al., 2004, 2014).

A major question in the field of cancer metabolism concerns

how to target metabolic features of cancer cells that are often

shared with normal proliferative and/or stem cells (Vander Hei-

den, 2011). Given that many of the metabolic characteristics of

the proliferative transition in our system are seen in cancers,

our findings can be explored carefully for therapeutic windows

based on cancer metabolism. Furthermore, we also expect

that our system provides insight into cancer metabolism directly

and how its dysregulation can be used to select metabolic

enzyme targets, pathways, and networks (Zhao et al., 2013).

In particular, nucleotide-metabolism-targeted chemotherapies
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Figure 7. A Model of IL-3 Activation of FL5.12 Cells and a Relationship to Cancer Studies

(A) An overview of molecular dynamics from our proteomics and metabolomics data of IL-3 activation in terms of five classes of the most abundant molecules

across the cell-cycle phases. Each color bar at each time point represents a relative fraction (or percentage) of molecules in each class of the same color (100%)

that have the maximal abundance at that time point, showing temporal distributions of the most abundant molecular fractions in each class. We only selected

those molecules in each class withMFCs that were greater than their median values, i.e., the top 50%. The five classes are: protein complexes/modules in purple

(‘‘modules’’), individual proteins in blue (‘‘proteins’’), intracellular metabolites in yellow (‘‘intra’’), uptaken extracellular metabolites in green (‘‘extra in’’), and

released extracellular metabolites in red (‘‘extra out’’). The median MFCs of the five classes are 1.24, 1.37, 2.49, 1.3, and 1.66, respectively. Several key proteins

and metabolites with maximal abundance at each time point are shown in the table.

(B) Ourmodel withmajor cellular andmetabolic processesmost affected or active across the cell-cycle phases showing similaritieswith the typical cancer stages.
have high associated toxicities, because this is a feature shared

with normal proliferative cells.

EXPERIMENTAL PROCEDURES

Experimental Model

A murine pro-B lymphocyte cell line, FL5.12-Bcl-2, was a gift from

Dr. Anthony Letai at the Dana Farber Cancer Institute. The cells were

cultured in RPMI 1640 (Invitrogen) supplemented with 10% calf bovine

serum (ATCC, catalog #30-2030), 1% 1003 penicillin/streptomycin (Gemini),

1% Geneticin (Invitrogen, catalog #10131-035), and 50 mM 2-mercaptoe-

thanol (Sigma/Aldrich), and 3 ng/mL IL-3 (R&D Systems, catalog #403-

ML-010). For the G0 synchronization, the cycling cells were washed three
734 Cell Reports 20, 721–736, July 18, 2017
times with warm PBS and then cultured in the same media, excluding

IL-3, for 36 hr. For activation, the quiescent cells were re-suspended in

the complete media including IL-3.

Cellular and Molecular Assays

Cell number counting, cell size measurement, AO assay, BrdU assay, and

western blotting are described in the Supplemental Experimental Procedures.

TMT-MS Proteomics

For details, see the Supplemental Experimental Procedures.

Liquid Chromatography-Tandem MS Targeted MS Metabolomics

For details, see the Supplemental Experimental Procedures.



Bioinformatic and Statistical Analysis

Quantification of abundance levels of proteomics, metabolomics, and protein

modules is detailed in the Supplemental Experimental Procedures. In general,

p values less than 0.05 were considered significant.

Data and Software Availability

The proteomics, metabolomics, and protein modules profiling data processed

in this study are available in the spreadsheet file with this article online (Data

S1). All software is freely available and listed in the Resource Table in the Sup-

plemental Experimental Procedures.

ACCESSION NUMBERS

The accession number for the proteomics dataset reported in this study is Pro-

teome Xchange: PXD006771 (http://proteomecentral.proteomexchange.org/

cgi/GetDataset?ID=PXD006771).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, two tables, and one data file and can be found with this article

online at http://dx.doi.org/10.1016/j.celrep.2017.06.074.
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