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Abstract

A small number of developmental signaling pathways are used repeatedly throughout
development in many different contexts. How these pathways interact with each other
and the specific cell context to generate a wide range of appropriate responses remains
an important question. The application of genomic and proteomic approaches and
imaging at high spatiotemporal resolution are providing answers to this question
and revealing new levels of complexity. Here, we discuss pathways as complex networks
and examples of how signaling outcomes can be influenced by the temporal nature of
the signal, its spatial regulation, and the cell context.

1. INTRODUCTION

WhenCurrent Topics in Developmental Biologywas first published 50 years

ago, the biochemical isolation of growth factors had begun to allow the effects

of signals on cells to be studied. In the 1980s and 1990s, pioneering genetic

screens in model organisms elucidated the major developmental signaling

pathways’ core components. Subsequent studies showed that these pathways

are used repeatedly to perform different developmental, physiological, or
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pathological functions. It soon became clear that relatively few pathways, such

as Notch, JAK–STAT, receptor tyrosine kinase, BMP, and Hedgehog were

capable of giving rise to diverse cellular responses and that combinatorial sig-

naling and cell context were critical to outcomes (Perrimon, Pitsouli, & Shilo,

2012). In many cases, we now have a good understanding of which pathways

are involved in which processes. Today, two critical and interconnected ques-

tions in the field remain: (1) how do pathways signal together to generate

diverse and robust outcomes, and (2) how does cellular context alter these

responses? Over the last decade, a combination of genome-scale approaches

and high-resolution imaging are offering answers to these questions and

revealing new levels of complexity. Here, we discuss some of the ways in

which our understanding of how signaling pathways function to regulate cell

fate are changing and leading to a more complex view.

2. PATHWAYS AS COMPLEX NETWORKS

Genetic studies of signaling pathways led to relatively linear textbook

views of canonical signaling (Fig. 1A). However, the fact that relatively

few pathways can generate such diverse outcomes suggested a more compli-

cated picture. The same pathway can give different outcomes in different cell

types, so context plays an important role. Many of the classic examples of

developmental signaling, such as the patterning of Drosophila ommatidia

(Félix & Barkoulas, 2012) and the Caenorhabditis elegans vulva (Nagaraj &

Banerjee, 2004), involve multiple signaling pathways working together with

cross talk between them, so combinatorial signaling adds an additional layer of

complexity (Housden & Perrimon, 2014). In addition, work on epidermal

growth factor (EGF) and nerve growth factor (NGF) signaling through the

mitogen-activated protein kinase (MAPK) pathway made it clear that a single

pathway axis can generate different outcomes (Chao, 1992). Simple linear

pathways, even acting in different combinations, would be insufficient to

explain the diverse outputs generated. Enhancer and suppressor screens in

model organisms have identified many additional regulators of signaling path-

ways, beyond the core components (Fig. 1B). Piecing together a more com-

prehensive picture of pathway complexity has required the combination of

both proteomic approaches, to determine interaction partners of known com-

ponents, and large-scale functional genomic approaches such as genome-wide

RNAi. Functional screens have identifiedmany novel pathway regulators, but

in isolation do not distinguish between direct and indirect pathway regulation.

Similarly, while proteomic approaches identify many proteins that interact

with known pathway components these interactions may not be functional
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regulatory interactions. The two approaches complement one another in

characterizing the direct regulatory interactome of a pathway.

Proteomic approaches have allowed interactomes to be derived for several

major signaling pathways. Large-scale yeast-two-hybrid approaches (Yu et al.,

2008) in combinationwith siRNA functional analysis have been used to char-

acterize the humanMAPK interaction network, identifying a core of over 600

proteins including novel pathway chaperones and scaffolds (Bandyopadhyay

et al., 2010). In a similar study across different Drosophila cell types, tandem

affinity purification mass spectrometry (TAP-MS) and RNAi were used to

identify functional RTK–Ras–ERK interactors (Friedman et al., 2011).Many

of the novel regulators identified were found to be cell type specific,

A B
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–10

Figure 1 From linear pathways to complex networks. (A) Simple representation of the
core Drosophila JAK/STAT pathway: cytokine ligands (upd1, 2, 3) bind to the receptor
(dome), which activates JAK (hop) and in turn Stat (Stat92E) to regulate target gene
expression. (B) An interaction network for dome, hop, and Stat92E (pink nodes) showing
genetic interactions (red and blue lines with arrows) and physical interactions (orange
lines). Network generated using EsyN (Bean et al., 2014).
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suggesting that different network wiring offers a mechanism of generating

context-specific outcomes. Recent work has also identified the hippo path-

way interaction network in Drosophila and mammals (Couzens et al., 2013;

Kwon et al., 2013; Wang, Li, et al., 2013). This allowed a link to be made

betweenHippo signaling and vesicle trafficking (Kwon et al., 2013), reflecting

the importance of membrane biology and subcellular localization in signaling,

as discussed below. In addition to targeted approaches, in which networks are

derived by starting from known pathway components and working outward

to their interactors, large-scale systematic interaction mapping by mass spec-

trometry has been performed in fly and mammalian cells (Guruharsha,

Obar, & Mintseris, 2012; Guruharsha et al., 2011; Havugimana et al.,

2012; Huttlin et al., 2015).While these studies were not focused on signaling,

they identified many candidates for novel pathway regulators. Many genes

remain without functional annotation and interaction maps allow functional

annotations to be proposed based on their interaction partners, including attri-

bution of possible roles in signal transduction. Conservation of interactions

between species may indicate conserved functional significance and act as a

filter to prioritize candidates for further study.

The combination of interaction and functional regulation from RNAi

makes a strong case for a protein being a direct regulator but does not nec-

essarily offer a mechanism. Phosphorylation events are often critical regula-

tors of signaling cascades, but even when an interaction involves a kinase the

systematic identification of kinase targets remains a work in progress. Large-

scale attempts at mapping kinase targets by phospho-proteomics are begin-

ning to address this and offer insights into the possible branching of signals

through phosphorylation targets (Sopko et al., 2014). More generally, as

interaction networks of hundreds of proteins are derived for different path-

ways, the presence of common components offers points for cross talk

between pathways in signal transmission.

While the focus of signaling research has largely been on the role of pro-

teins in pathways, nonprotein regulators have begun to take on greater

importance, adding to the complexity and offering additional points for

diversification of outcomes. As the function of noncoding RNAs has been

elucidated in many processes, their roles in signaling networks have become

apparent. miRNA regulation has been shown for pathways includingWing-

less (Silver, Hagen, Okamura, Perrimon, & Lai, 2007) and Hedgehog (Kim,

Vinayagam, & Perrimon, 2014). The lin28-let-7 axis has been shown to be

critical in a range of stem cell and oncogenic signaling pathways, and let-7

miRNA targets include components of the insulin signaling pathway

(Frost & Olson, 2011; Zhu et al., 2011).
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Themetabolic status of the cell may also influence signaling and there are

many examples of intersection between developmental signaling pathways

and metabolism, with metabolites acting as regulators and readouts of signal-

ing. For example, the eicosanoid PGE2 has been shown to regulate theWnt

pathway and EGF signaling in hematopoietic and embryonic stem cells,

respectively (Goessling et al., 2009; Yun, Lee, Ryu, & Han, 2009), and

Akt activity is regulated by TOR in response to amino acids (Saha et al.,

2014). Metabolites either individually or collectively can also act as pheno-

typic sensors of signaling states, for example, the NAD/NADH sensor

SoNar has been used as a readout for metabolic screening in cancer drug dis-

covery (Zhao et al., 2015). AMP functions as an energy sensor, indicating

low nutrient status by activating AMPK (Zhang et al., 2013), which is capa-

ble of cross talk with developmental signaling pathway components such as

MEK–ERK via phosphorylation of BRAF (Shen et al., 2013). Physical fac-

tors may also have significant effects on signaling outcomes and there is an

increasing appreciation of the role of mechanical forces in cellular commu-

nication (as reviewed in detail in Miller & Davidson, 2013).

Large interaction networks afford opportunities for context-specific out-

comes and cross talk with other pathways. It has become clear that transmis-

sion of information through a network, even for a single pathway, is more

complex than a linear flow. The differential expression or regulation of net-

work components in distinct cell types offers a possible means to alter the

flow of information through pathways in a cell type-specific manner

(Kiel, Verschueren, Yang, & Serrano, 2013). Engineering approaches to

information flow through a network such as modular response analysis, as

opposed to qualitative assessment of inputs and outputs, may allow a better

understanding of temporal pathway properties (Bruggeman, Westerhoff,

Hoek, & Kholodenko, 2002). Understanding signal transmission in this

way requires inputs and outputs of pathways to be measured at different

points through the pathway in either real time or time series, and novel

imaging approaches are allowing this.

3. TEMPORAL PROPERTIES OF SIGNAL TRANSDUCTION

Dissecting the temporal component of signaling requires tools to detect

dynamic readouts and manipulate signaling at multiple levels. The toolset that

would be required to do this in a systematic way across the major signaling

pathways is very incomplete but, where approaches are available, they have

offered new insights into the temporal properties of signaling pathways.

Dynamic readouts coupled to inputs that can be adjusted for frequency,
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amplitude, and duration have shown that the nature of the signal can be used

to differentially transmit information (Fig. 2A; reviewed in Purvis & Lahav,

2013). In pheochromocytoma 12 (PC12) cells, EGF orNGF treatment results

in the near-opposite responses of division and differentiation, respectively

(Chao, 1992). Both of these pathways signal through the MAPK–ERK net-

work but the dynamics of ERK activation differ according to the stimulus

(Marshall, 1995). EGF triggers transient ERK signaling, whereas NGF causes

sustained ERK activity. Differential dynamics of the same pathway effector’s

activity can therefore result in different cellular outcomes. Modular response

analysis using RNAi to knockdown pathway components and phospho-

specific antibody staining to detect the activation state of different points in

the network has shown that different feedback responses underlie this differ-

ence in ERK activation dynamics (Santos, Verveer, & Bastiaens, 2007). EGF

activation causes negative feedback within the network and hence transient

ERK activation, whereas NGF signaling results in positive feedback and

sustained ERK activation. Reversal of these feedback loops is sufficient to

reverse the cellular responses to NGF and EGF.

In vivo, manipulating and tracking signaling at sufficient spatiotemporal

resolution to study signaling dynamics remains challenging but a growing

range of fluorescence-based tools are becoming available (Doupé &

Perrimon, 2014). In some cases, subcellular localization of a fluorescently

labeled component can be used to detect pathway activity. For example,
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Figure 2 Spatiotemporal properties of signaling pathways. (A) The temporal properties of
a single signal (graphs) may determine differential cellular responses (colored shapes).
(B) Schematic of a cell showing some possible points of spatial regulation of signal trans-
duction. Cellsmay localize surface signalingby: extensionof short nanotube projections or
longer cytonemes (i), apicobasal (ii), and planar (iii) cell polarization. Endocytosis and sig-
naling endosomes (iv), lysosomes (vi), and mitochondria (vii) all have roles in subcellular
localizationof signaling,whilenucleocytoplasmic transport (v) is an important step inmany
pathways.
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GFP tagged STAT translocation to the nucleus when the JAK/STAT path-

way is activated (Chen &Reich, 2010).Where this is not possible changes in

protein conformations or interactions can sometimes be detected by fluores-

cence resonance energy transfer (FRET) between donor and acceptor pro-

bes fused to signaling components such as MEK and ERK (Burack & Shaw,

2005). An intramolecular FRET probe has been used to successfully measure

ERK activity in vivo in a C. elegans NaCl responsive sensory neuron with

high temporal resolution (Tomida, Oda, Takekawa, Iino, & Saito, 2012).

In this study, the nature of the upstream signal (NaCl) allowed a microfluidic

device to be used to precisely control the signal and visualize the ERK activ-

ity response, revealing that cyclic stimulation with a periodicity in the tens of

seconds resulted in sustained high levels of ERK activity whereas sustained

signals or a shorter signal periodicity did not. The dynamics of an upstream

signal rather than just the concentration of the particular signal can therefore

be used as a determinant of the cellular response. Optogenetics (reviewed in

Toettcher, Voigt, Weiner, & Lim, 2011) has also been used to manipulate

Ras–ERK signaling with high temporal resolution demonstrating differen-

tial responses to different temporal activations in NIH 3T3 cells (Toettcher,

Weiner, & Lim, 2013). Proteomics was used to assess downstream results,

offering a nice demonstration of how the genome-scale approaches dis-

cussed above can be combined with high-resolution imaging to better

understand signal transduction and responses. Dynamic signaling is not a

unique feature of the Ras–ERK network. Oscillations in Notch signaling

play a critical role in vertebrate somite formation and destabilized transcrip-

tional reporters of Notch signaling have been used to image these oscillations

directly (Aulehla et al., 2008; Masamizu et al., 2006). As tools become avail-

able to study the temporal properties of other pathways in other contexts,

this may prove to be a general theme, providing additional ways to encode

information with a finite number of pathways.

4. SPATIAL REGULATION OF SIGNAL TRANSDUCTION

Increasing resolution of signal imaging has also led to an increased

understanding of the spatial properties and regulation of signal transduction

at the subcellular level (Fig. 2B). In order to regulate gene expression nuclear

translocation is an important process in many signaling pathways; for exam-

ple, STAT6 has been shown to continuously shuttle between nucleus and

cytoplasm but to only accumulate in the nucleus when activated

(Chen & Reich, 2010). Many organelles have roles in signal transduction;
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the mitochondrion is a signaling organelle in apoptosis and is an example of

metabolites influencing signaling as mitochondrial reactive oxygen species

can affect cellular responses (Chandel, 2014). The lysosome is the site of

active TOR and AMPK signaling, representing a key point of intersection

between metabolism and signaling (Bar-Peled, Schweitzer, Zoncu, &

Sabatini, 2012; Zoncu et al., 2011). Endocytosis and membrane trafficking

have particular importance to signal transduction by creating additional sites

for signaling, and downregulating or recycling receptors (Di Fiore & von

Zastrow, 2014; Gonnord, Blouin, & Lamaze, 2012). Combining RNAi

with high-resolution imaging and multiparametric imaging analysis has

allowed the complexity of endocytic traffic and its links to many signaling

pathways to be revealed (Collinet et al., 2010). G-protein-coupled receptor

signaling from endosomes may lead to extended pathway activation and

the location of second messenger production is important to the cellular

response (Tsvetanova & von Zastrow, 2014). Recycling endosome traffick-

ing of the Notch ligand Delta is important for its function and plays a

role in asymmetric fate of Drosophila sensory organ precursor (SOP)

daughters (Emery et al., 2005). Segregation of endosomes at division can

determine the signaling states and hence fates of the resulting cells. Special-

ized endosomes marked by the presence of Sara have been shown to be

responsible for the equal distribution of TGFβ signal components at cell

division in the Drosophila wing disc (B€okel et al., 2006). Sara endosomes

are also critical for asymmetric notch signaling post cell division in

both SOP cells and intestinal stem cells in Drosophila and in Zebrafish

neural precursors (Coumailleau, Fürthauer, Knoblich, & González-

Gaitán, 2009; Kressmann, Campos, Castanon, Fürthauer, & González-

Gaitán, 2015; Montagne & Gonzalez-Gaitan, 2014).

Even at the plasma membrane, the localization of signaling receptors,

ligands, and regulators to particular domains can be important for determin-

ing appropriate cellular responses. Apicobasal polarity of neuroblasts, for

example, allows the asymmetric segregation of the Notch inhibitor Numb

to the ganglion mother cell on division, resulting in biased Notch activity

and asymmetric fate (Knoblich, 2010). Planar cell polarity components

are responsible for noncanonical Wnt signaling in various development pro-

cesses (Wansleeben & Meijlink, 2011). In addition to cell polarity, recent

work in the Drosophila testes has shown that germline stem cells can extend

nanotube projections, deforming the membrane of the hub cells that form

their niche (Inaba, Buszczak, & Yamashita, 2015). These extensions were

found to be strongly enriched for Dpp receptors, allowing highly localized
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signaling that restricts the ability to self-renew to only the most proximal

germline stem cells. On the larger scale of tissues and organs, imaging

approaches are also giving new insights into classical questions about posi-

tional information. Cytonemes, cellular protrusions that may extend over

several cell diameters, have been described in various systems and play

important roles in morphogen gradients such as the distribution of

Hedgehog in the Drosophila wing disc (Bischoff et al., 2013; Kornberg &

Roy, 2014). Interpretation of positional information in response to signals

is critical for determination of different cell fates in many developmental

contexts (Kicheva, Cohen, & Briscoe, 2012; Wolpert, 2011). Many theo-

retical attempts have been made to model the establishment and mainte-

nance of morphogen gradients and advances in imaging are allowing

data to be generated to test these hypotheses, as for the bicoid gradient

in the Drosophila embryo (Bergmann, Tamari, Schejter, Shilo, & Barkai,

2008; Gregor, Tank, Wieschaus, & Bialek, 2007; Gregor, Wieschaus,

McGregor, Bialek, & Tank, 2007). Even a nonprotein gradient, that of ret-

inoic acid in vertebrate hindbrain patterning, has been visualized using a

modified retinoic acid receptor fused to a FRET donor and acceptor pair

such that retinoic acid binding causes detectable changes in the FRET signal

(Shimozono, Iimura, Kitaguchi, Higashijima, & Miyawaki, 2013).

While imaging has helped elucidate many of these processes on a subcel-

lular to tissue scale, genomic and proteomic approaches can also inform stud-

ies of spatial aspects of signaling. Networks derived from large-scale

proteomic approaches can reflect subcellular organization and where local-

ization is known for a component of a complex, spatial annotation of less

well-characterized proteins may be possible (Huttlin et al., 2015). The

development of targeted proteomic approaches to profile the proteomes

of specific organelles or cell compartments may also prove informative in

signaling biology. Techniques such as BioID (Roux, Kim, Raida, &

Burke, 2012) and Apex (Rhee et al., 2013), in which a protein-modifying

enzyme is fused to a protein or tag that targets it to a specific subcellular local-

ization, allow the proteome of that region of the cell to be identified by iso-

lation of the modified proteins. BioID has already been used to help map the

hippo pathway interactome by allowing profiling of proteins not readily

extracted by FLAG AP–MS (Couzens et al., 2013). In principle, these

approaches could be used both to obtain spatial information about signaling

networks and to profile the changes in network component interactions

following pathway stimulation. On the tissue, organ or developing embryo

scale, recent advances in single-cell sequencing approaches also have
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potential for mapping differences in the transcriptional outputs of signaling.

Two recent studies developed droplet-based single-cell RNA sequencing

techniques and applied them to characterize heterogeneous differentiated

cell types in the retina, and heterogeneity among differentiating embryonic

stem cells (Klein et al., 2015; Macosko et al., 2015). In principle, these

approaches could be applied to questions of differential responses to signal-

ing in development on a genome-wide scale at single-cell resolution. Posi-

tional information could be inferred retrospectively by imaging the

expression patterns of differentially expressed genes in situ.

5. THE IMPORTANCE OF CONTEXT

Cell-type specificity is a key feature allowing relatively few pathways

to generate the diverse outcomes observed in development. At the level of

signal transduction, different cells will express different combinations of net-

work components, allowing different flows of information through the same

basic pathway. Altering the abundance of network components that exhibit

mutually exclusive interactions with a pathway node, such as CRAF and

RIN1 interactions with Ras, has been shown to alter signaling outcomes

(Kiel et al., 2013). When modeling information flow within a network, it

is therefore important to be aware of the specific cellular context in order

to place appropriate constraints on the network. Spatial separation of com-

ponents to distinct subcellular locations in specific contexts may also need to

be considered. As techniques such as RNAseq and proteomics are usedmore

widely, information on the expression of pathway components in specific

cell types is increasingly becoming available. However, the need to collate

this information and differences in experimental design, sample preparation,

and data analysis present challenges to easy interpretation.

Ultimately, signaling effects on cell fate are most commonly mediated at

the transcriptional level. The cell type and developmental context critically

influence the outcome of signaling events at the level of transcriptional tar-

gets. The main effector transcription factors have been identified for the

major pathways (Perrimon et al., 2012), but it is clear that their targets vary

depending on the cellular context (for example, STAT (Wang, Chen, He,

Zhou, & Luo, 2013) and Wnt (Vincent, 2014)). The cell’s history and cur-

rent state of other signaling pathways set a unique ground state upon which a

signal can act. There are a number of ways in which context may influence

outcomes at the level of transcription itself. Lineage-specific transcription

factors (or effectors of other signaling pathways) may recruit signaling
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pathway effectors, create a permissive chromatin state for their binding, or

influence their function when bound (Fig. 3).

Approaches such as ChIPseq and DamID allow the profiling of transcrip-

tion factor binding and chromatin states on a genome-wide scale and, in

combination with expression profiling, can help dissect these mechanisms.

Interaction with other transcription factors, which may be effectors of other

pathways or lineage-specific factors, can influence both the recruitment

to and function at enhancers and promoters across multiple species. Notch

signaling, for example, generates different transcriptional responses in Dro-

sophila muscle progenitors and hemocytes due to interaction with the

lineage-specific factors Twist and Lozenge, respectively (Bernard, Krejci,

Housden, Adryan, & Bray, 2010; Terriente-Felix et al., 2013). During ver-

tebrate hematopoietic regeneration, both myeloid and erythroid lineages are

generated in response to BMP andWnt signaling. The effector transcription

factors for BMP and Wnt in both lineages have been shown to be SMAD1

Figure 3 Transcriptional context in signaling. Lineage-specific regulators (or effectors of
other pathways) (green) may regulate the targets of signaling pathways by: acting as
pioneer factors to open chromatin into a permissive state (top panel, black line is
DNA, light blue balls nucleosomes with histone tail extending, dark blue dots represent
histone modifications); direct recruitment of effector transcription factors (red) to
specific enhancer sites (middle panel); or by cooperative regulation, for example, by rec-
ruiting complementary chromatin modifiers or transcriptional apparatus (lower panel).
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and TCFL2, respectively. However, despite the relatively close relationship

between the lineages and the use of the same effector transcription factors,

the responses show lineage specificity (Trompouki et al., 2011). In the mye-

loid lineage, the recruitment of SMAD1 and TCFL2 is mediated by the

myeloid-specific transcription factor C/EBPα, whereas in the erythroid lin-
eage GATA1 recruits the same pathway effectors to distinct targets. Inter-

estingly, misexpression of the lineage-specific factor from one lineage in

the other is sufficient to result in an exchange of targets.

While in some cases a single lineage-specific factor may act as a critical

target determinant, it is likely that in many contexts the combination of fac-

tors is key. The binding of transcription factor PU.1 in macrophages and

B cells correlates with C/EBPs and EBF1, respectively (Heinz et al.,

2010). During macrophage activation, the combination of PU.1 and

C/EBPs interact with NFKβ to determine its functional targets (Heinz,

Romanoski, Benner, & Glass, 2015; Trompouki et al., 2011). PU.1 may

act in this context as a pioneer factor, modifying histones and remodeling

nucleosomes to create a permissive chromatin state for the recruitment of

subsequent factors (Heinz et al., 2010; Iwafuchi-Doi & Zaret, 2014). In

most developmental contexts, multiple signaling pathways may be active

at once and a comprehensive understanding on how pathways regulate spe-

cific targets in specific cell types will therefore require both the lineage-

specific factors and the effector transcription factors of multiple signaling

pathways to be taken into account.

6. CONCLUSION

The field of intercellular signaling has developed rapidly and genomics

and imaging approaches are offering a wide range of examples of how path-

ways generate diverse outcomes and how information is robustly transmit-

ted. Complex networks of signaling regulators allow different ways of

transmitting information through a single pathway, and provide points of

cross talk with different pathways. Spatiotemporal aspects of signaling fur-

ther increase the complexity of signal transduction and offer additional

means to encode information. In addition to differential expression of path-

way components, transcriptional context can act as a key determinant of cell

type specificity in signaling. In many cases, new approaches are revealing

examples of the varied ways in which diverse outcomes can be generated.

However, in generating large datasets and describing aspects of signal trans-

duction in ever-greater detail there is a risk of accumulating large quantities
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of complex information without increasing understanding. It is important to

dissect which regulatory processes occur in which context and which are the

most functionally important. Moving forward, it will be important to use

systematic approaches to generate coherent datasets that can be compared

and used together, while anchoring findings to the biological outputs that

they regulate. Just as the application of genetics to developmental biology

led to the elucidation of many core signaling pathways, in this era of

“omics” approaches, collaborative work between cell biology, biochemis-

try, computational biology, and physics is making substantial contributions

to our understanding of signal transduction.
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