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SUMMARY

Insulin regulates an essential conserved signaling
pathway affecting growth, proliferation, and meta-
bolism. To expand our understanding of the insulin
pathway, we combine biochemical, genetic, and
computational approaches to build a comprehensive
Drosophila InR/PI3K/Akt network. First, we map the
dynamic protein-protein interaction network sur-
rounding the insulin core pathway using bait-prey
interactions connecting 566 proteins. Combining
RNAi screening and phospho-specific antibodies,
we find that 47% of interacting proteins affect
pathway activity, and, using quantitative phospho-
proteomics, we demonstrate that �10% of interact-
ing proteins are regulated by insulin stimulation at
the level of phosphorylation. Next, we integrate these
orthogonal datasets to characterize the structure
and dynamics of the insulin network at the level of
protein complexes and validate our method by iden-
tifying regulatory roles for the Protein Phosphatase
2A (PP2A) and Reptin-Pontin chromatin-remodeling
complexes as negative and positive regulators of
ribosome biogenesis, respectively. Altogether, our
study represents a comprehensive resource for the
study of the evolutionary conserved insulin network.
INTRODUCTION

The insulin signaling pathway is highly conserved across all

metazoans. In Drosophila and mammalian systems, insulin
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signaling regulates growth during development and in response

to a variety of environmental cues such as nutrient availability,

intracellular energy levels, hypoxia, osmotic stress, and DNA

damage (Reiling and Sabatini, 2006). Regulation of growth

occurs through the control of biological processes ranging

from general metabolism, protein and lipid biosynthesis, glucose

uptake, and energy utilization and production to cell survival,

growth, and proliferation. Given the plethora of processesmodu-

lated by insulin signaling, it is not surprising that a variety of

extrinsic and intrinsic factors directly impinge upon this pathway.

Further, its fundamental role in cellular and organismal homeo-

stasis is reflected by the fact that dysregulated signaling can

lead to a range of systemic disorders, including diabetes,

obesity, inflammation, cancer, hypertension, high levels of

cholesterol and other lipids, heart disease, kidney disease, fe-

male infertility, and neurodegeneration (White, 2003). Insulin

also contributes to the regulation of lifespan (Clancy et al., 2001).

Insulin binds to the extracellular domain of its cognate InR

receptor tyrosine kinase (RTK) to initiate a series of intracel-

lular phosphorylation events. Upon insulin binding, the InR is

activated through tyrosine autophosphorylation, and it phosphor-

ylates several proteins in the cytoplasm, including the InR sub-

strate (IRS) that functions as a docking protein for SH3 domain-

containing signaling molecules responsible for the next steps in

the signaling cascade. InR signaling recruits twomajor pathways,

the phosphatidylinositol 3-kinase (PI3K) pathway, which medi-

ates the metabolic effects of insulin, and the mitogen-activated

protein kinase (MAPK) pathway, which mediates the mitogenic

effects of insulin in concert with the PI3K pathway.

The insulin signaling pathway is highly evolutionarily conserved,

and many components are well characterized both at the molec-

ular and biochemical levels. In Drosophila, more than 20 proteins

have been assigned as core insulin signaling pathway com-

ponents (Teleman, 2009). To expand our understanding of the
uthor(s).
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Figure 1. Overall Strategy Used to Build and

Mine the Drosophila Insulin Signaling

Network

Three different datasets, PPI, RNAi screens,

and phosphoproteomic changes, generated at

three different time points (baseline, 10 min,

and 30 min) after insulin stimulation, were inte-

grated to build the insulin network (InsulinNet). The

network was interrogated to identify dynamic

changes at the level of single proteins and protein

complexes.
structureand functionof the insulinpathway,wedecided tobuild a

comprehensivemapof the insulin network, asdone in recent years

for a number of other Drosophila pathways, using proteomic and

functional genomic studies (Friedman et al., 2011; Kwon et al.,

2013). Although small-scale networks (with approximately 50 pro-

teins) for the insulin pathway have been built (Glatter et al., 2011;

Humphrey et al., 2013, 2015), a comprehensive network is not

yet available. Thus, we used three orthogonal technologies, affin-

ity-purification mass spectrometry (AP-MS) for mapping protein-

protein interaction (PPI), RNAi to functionally characterize the

interactors, and phosphoproteomic data to identify targets of

the pathway. To capture signaling dynamics, we mapped the

network at three different time points following insulin stimulation.

Next,weannotated the network byorganizing interacting partners

as protein complexes and characterized their relationshipwith the

pathway (activation/inhibition). This integrated network was sys-

tematically mined to identify protein complexes that are essential

for insulin signaling and candidate complexes validated in vitro

and in vivo. Altogether, our study represents a comprehensive

resource of the evolutionary conserved insulin network.

RESULTS

We used S2R+ cells as a model system to build the

Drosophila insulin network (InsulinNet) (Figure 1). InsulinNet
Cell Reports
components were identified and char-

acterized by mapping a PPI network

centered on 20 canonical pathway

members using AP-MS (InsulinNet-

PPI), functional characterization of

InsulinNet proteins by RNAi using

phospho-AKT (pAKT) and phospho-

ERK (pERK) as readouts (InsulinNet-

RNAi), and identification of pathway

targets using global phosphoproteome

measurements (InsulinNet-Phospho).

To capture the dynamics of the insulin

network, data were collected at three

time points: baseline (without insulin

treatment) and after insulin stimulation

for 10 or 30 min. The time points were

chosen based on the pathway activity

by measuring pAKT and pERK levels

(Figure S1). The pathway activity is low
at baseline, peaks at 10 min, and returns close to normal by

30 min because of feedback regulation.

InR/PI3K/Akt Protein-Protein Interaction Network
To map the dynamic PPI network surrounding the insulin core

pathway, we selected 20 well characterized, conserved canoni-

cal components of the pathway as baits and performed tandem

affinity purification (TAP) assays in Drosophila S2R+ cells (Table

S1). TAP-tagged proteins were expressed in S2R+ cells, and

lysates were prepared at baseline (unstimulated cells) or after

stimulation with insulin for 10 or 30 min. All experiments were

performed using three biological replicates, thus representing,

altogether, 201 samples for mass spectrometry characterization

(Figure 2A). In total, we identified an unfiltered network of 16,893

interactions (bait-prey relationships) connecting 20 bait proteins

with prey proteins (Table S1). Note that some of the bait proteins

are also identified as prey proteins because of intimate interac-

tion between the canonical components.

We applied the significance analysis of interactome (SAINT)

(Choi et al., 2011) algorithm to filter out non-specific interactors

from the raw TAP-MS data. We compiled lists of literature-

curated PPIs, positive reference set (PRS) and non-specific

interaction, negative reference set (RRS), to assess the perfor-

mance of the SAINT score and to choose a cutoff value (Exper-

imental Procedures; Table S1). Our evaluation shows that the
16, 3062–3074, September 13, 2016 3063



Figure 2. TAP-MS Identification of the PPIs Surrounding the Drosophila InR/Pi3K/Akt Signaling Pathway

(A) Overview of the experimental workflow and data processing of the TAP-MS/MS datasets. PPIs were probed for 20 baits in triplicate at three time points (180

TAP-MS/MS experiments). PPIs with a SAINT score R 0.95 were used to build the network.

(B) Known canonical interactions recapitulated in the insulin network. Square and circular nodes represent baits and preys, respectively. The edge color

represents the time point at which the interaction is identified, and the arrow points from the bait to the prey. The node colors are described.

(C) Venn diagram showing the overlapping prey proteins between the InsulinNet-PPI generated at different time points.

(D) Integrated insulin network representation of the InsulinNet-PPI surrounding the InR/Pi3K/Akt pathway at three different time points. 20 baits (squares) and 554

preys (circles) are present in the network and connected by 1,807 edges. Only PPIs with a SAINT score R 0.95 are shown.

(E) Quality assessment of the InsulinNet-PPI at different time points by comparison with literature-curated interactions.

(F) Clustering of the bait proteins based on the overlapping prey proteins at different time points (see Experimental Procedures for the prey similarity measure).

(G) GO functional analysis of identified prey proteins (enrichment of biological process terms are shown). B, baseline.

(H) Comparison of the InsulinNet-PPI (blue) with other relevant published Drosophila PPI datasets (orange). The p value shows the enrichment of overlap

compared with randomized networks.
SAINT score is robust in distinguishing true interactions from

non-specific interactions (area under curve of 0.94 in the receiver

operating characteristic [ROC] curve plot) (Figure S2), and we

chose a SAINT score cutoff of 0.95 (false positive rate < 4%).

Known InR-PI3K-Akt signaling pathway interactions (Figure 2B;

Table S1), including those between the adaptor IRS/chico and
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InR, the PI3K subunits p110 (PI3K92E) and p60 (PI3K21B), the

tumor suppressor complex subunits Tsc2/gigas and Tsc1, and

the downstream translational regulators 4E-BP/Thor and

eIF-4E, are identified above the SAINT score cutoff of 0.95.

Using a SAINT cutoff of 0.95, we generated a filtered Insulin-

Net-PPI of 1,807 interactions between 554 proteins (Figures



2C and 2D; Table S1). More than 10% of the interactions present

in InsulinNet-PPI are supported by the literature, either from

Drosophila and/or interologs mapped from humans, mouse,

C. elegans, or yeast (Experimental Procedures; Table S1;

Figure 2E). This overlap is significantly higher than random

expectation (4-fold higher). Interestingly, more PPIs identified

at the 10-min time point showed overlap with previously pub-

lished interactions and were supported by multiple lines of

evidence compared with the other two time points.

InsulinNet-PPI consists of 554 preys that correspond to 274

proteins identified at baseline in addition to 242 and 430 proteins

identified at 10 and 30 min, respectively (Figure 2C). Among the

554 prey proteins, 100 proteins interact at all three time points

(baseline and 10 and 30 min), 192 proteins interact at two, and

262 proteins interact at a single time point. Sixty-six percent of

prey proteins (365) interact with two or more baits, and the re-

maining 34% (189 proteins) interact with single baits (Figure 2D).

Interestingly, although most individual bait proteins interact with

distinct prey proteins at baseline, they tend to share common

prey proteins after stimulation with insulin, suggesting that

pathway components only assemble in response to the stimulus

(Figure 2F). Similarly, module-based clustering indicates that

canonical pathway components close together in the signaling

pathway share more interacting proteins with each other than

with components farther upstream or downstream in the

pathway (Figure 2F). These observations further validate the

quality of InsulinNet-PPI.

To functionally characterize InsulinNet-PPI, we performed a

gene ontology (GO) enrichment analysis (Boyle et al., 2004; Fig-

ure 2G; Table S2). The functional categories enriched among the

proteins that interact with all three time points capture most of

the known roles of the insulin pathway, including the regulation

of cell proliferation, cell size, aging, autophagy, and apoptosis

(Reiling and Sabatini, 2006; Teleman, 2009). The interactors spe-

cific to the 10-min condition are enriched for functions such as

translation, ribosome biogenesis, cell cycle, and RNA process-

ing, which are key functions regulated by the pathway. Almost

96% (531 of 554 prey proteins) of the interacting proteins identi-

fied are conserved in humans (Table S2). These conserved prey

proteins are implicated in a wide range of human diseases,

including different cancer types and type II diabetes (Table S2),

demonstrating the relevance of our network for extrapolation

to human diseases.

We systematically compared InsulinNet-PPI with other rele-

vant published Drosophila PPI networks and calculated the

significance of overlapping interactions. First, we compared

InsulinNet-PPI with the InR/Tor PPI network consisting of 97 in-

teractions connecting 58 proteins (Glatter et al., 2011). This

network was generated in Drosophila Kc167 cell lines using 15

canonical components as bait proteins for AP-MS experiments.

Although only 10 of 20 InsulinNet-PPI baits overlap with the

InR/Tor PPI network, the analysis shows significant overlap at

the interaction level (23 of 51 InR/Tor interactions overlap with

InsulinNet-PPI; p < 0.0001) (Figure 2H; Table S1). Next we

compared our InsulinNet-PPI with a Drosophila AP-MS network

generated from 3,488 individual pull-down experiments

(Drosophila Protein Interaction Map [DPiM]) (Guruharsha et al.,

2011). For the comparative analysis, we selected 1,312 PPIs
from DPiM that involve six overlapping bait proteins shared by

DPiM and InsulinNet-PPI and found significant overlap (219 of

1,312 PPIs) between these networks (p < 0.0001) (Figure 2H; Ta-

ble S1). Finally, we compared InsulinNet-PPI with the Drosophila

MAPK PPI network (Friedman et al., 2011) for which our

InsulinNet-PPI shares one bait (InR). We found significant over-

lap (seven overlapping PPIs, p < 0.0001) (Figure 2H; Table S1).

Extending the comparative network analysis to include pub-

lished Drosophila PPIs and inferred interactions revealed 192

InsulinNet-PPI interactions that were supported by one or

more lines of evidence (Experimental Procedures; Table S1),

further validating the relevance of the InsulinNet-PPI dataset.

Finally, we created a web tool, InsulinNet (http://fgrtools.hms.

harvard.edu/InsulinNetwork/), to interactively query and access

InsulinNet-PPI data (see details in the Experimental Procedures).

Functional Genomic Screens to Identify Regulators of
the Insulin Pathway
To systematically characterize InsulinNet-PPI pathway compo-

nents, we interrogated by RNAi the function of components of

the network using phospho-specific antibodies against Akt and

ERK as readouts for pathway activity (Experimental Procedures).

Specifically, we performed six independent RNAi screens in

S2R+ cells, measuring pAkt and pERK levels at three conditions

(baseline and 10- and 30-min insulin treatment) (Figure 3A). We

excluded ribosomal proteins and screened almost 90% of the

InsulinNet-PPI (480 of 554) components. To improve the robust-

ness of the RNAi screens, more than 78% of the genes (376 of

480) were tested with multiple RNAi reagents (independent

amplicon designs), including 114 genes (23.7%) that were tested

with three ormore RNAi reagents in triplicates.We computed the

fold change of pERK and pAKT levels compared with controls

and identified genes with median log2 fold change R 0.5

and % �0.5 as negative and positive regulators of the pathway,

respectively (Experimental Procedures, dataset referred to as

InsulinNet-RNAi).

Core components of the pathway scored in the RNAi screens,

indicating the robustness of the assays (Table S3; Figure S3). In

particular, as expected from previous studies (Kockel et al.,

2010), InR and Pi3K92E scored as positive regulators, whereas

Pten and S6k scored as negative regulators of pAkt. In addition,

wealso identified corkscrew (csw)andGap1aspositive andnega-

tive regulators of pERK, respectively (Friedman and Perrimon,

2006). In total, 47% of the genes that were tested (226 of 480)

were identified as regulators of pAkt or pERK or both at baseline

or following stimulus (Figures 3A and 3B; Table S3). 42% of the

hits regulateonlypAkt, 32.3%regulateonlypERK, and the remain-

ing 21.7% regulate both (Figure 3B). Of the pAkt regulators, the

majority of the hits (115 of 144) are negative regulators, with

most of them (65%) scoring at baseline (Figure 3A; Table S3). Pos-

itive regulators of pAktwereprimarily identified after 10-min insulin

treatment (30of34).Only13.8%(20of144)of thehits regulatepAkt

at more than one time point, and three (shu, Arc1, and 26-29-p)

were identifiedasbothpositiveandnegative regulatorsdepending

on the stimulus condition. We observed a similar tendency for

pERK regulators, including more negative regulators scoring at

baseline (106 of 131 hits), 87% of all positive regulators scoring

at 10 min, and 16% regulating pERK in more than one condition.
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Figure 3. Functional Characterization of the InR/Pi3K/Akt Network Components Using RNAi Screens

(A) Plot showing the results from six RNAi screensmeasuring two different readouts (pAkt and pErk) at three different time points (baseline and 10 and 30min after

insulin treatment). The effect of knocking down the prey proteins was tested using RNAi and measured levels of phospho-Akt1 (Ser479) and dually

phosphorylated ERK. Negative and positive regulators of the pathway increase and decrease the phospho-sensors, respectively.

(B) Venn diagram showing the overlap between pAkt and pErk regulators (all time points were combined).

(C) Heatmap showing the functional enrichment of pAkt and pErk regulators (GO biological process).

(D) Plot showing core components of the insulin network according to the number of pERK and pAkt regulators with which they interact.

(E) Heatmap comparing the dynamics of TAP-MS/MS identification versus the time point at which it regulates the pathway output as monitored by pAkt and

pERK. The square filled with red shows that the overlap is significantly enriched compared with the random set.
These results illustrate the need to screen at both baseline and

following stimulation to efficiently identify positive and negative

regulators of the pathway.

Among the hits that regulate both pAkt and pERK, nine

genes have opposite effects on the two readouts (serving as

a positive regulator of pAkt and negative regulator of pERK

or vice versa). For instance, as shown previously in worms

(Hopper, 2006), Csw, a protein tyrosine phosphatase and a

core component of the MAPK pathway, negatively regulates

pAkt and positively regulates pERK. Similarly, we identified

Pp2A-29B, a regulatory subunit of the PP2A serine/threonine

protein phosphatase, as a positive regulator of pAkt and a

negative regulator of pERK. Other genes in this category

are Hel25E, CG6686, eIF5B, Mi-2, CG42724, CG6227, and

deltaCOP. Functional enrichment analysis reveals distinct

functions for positive and negative regulators of pAkt and

pERK (Figure 3C; Table S3). Common regulators of pAkt and

pERK are enriched for insulin signaling-related functions

such as cell cycle and RNA splicing.
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Next we compared our InsulinNet-RNAi dataset with other

relevant published RNAi screens available from GenomeRNAi

(Schmidt et al., 2013). 15% (34 of 226) of the InsulinNet-RNAi

hits are unique (not reported as hits in other screens), and only

two genes are frequent hitters (Experimental Procedures). Next

we compared InsulinNet-RNAi to genome-wide pERK regulator

screens (Friedman and Perrimon, 2006) and identified 50 com-

mon regulators (p < 0.0001). Further, 147 additional regulators

were present in InsulinNet-RNAi only, and 92 genes identified

previously in genome-wide pERK screens were not present in In-

sulinNet-RNAi, probably reflecting differences in stimulation

conditions, cell lines, and amplicon design. Finally, because

ribosome biogenesis is regulated by insulin signaling, we

compared InsulinNet-RNAi with a previous genome-wide screen

for regulators of nucleolar size (Neum€uller et al., 2013). Signifi-

cantly, 36 genes were in common between InsulinNet-RNAi

and the nucleolar size screen (p < 0.0001).

Comparing InsulinNet-RNAi and InsulinNet-PPI revealed that

the Tsc complex alone interacts with 36.7% of the RNAi hits



(21 with Tsc1, 31 with Gigas (Gig)/Tsc2, and 31 with both) (Fig-

ure 3D; Table S3). 58.5% of the proteins interacting with Pten

were hits following knockdown by RNAi (the most for any bait),

and the bait with the lowest number of interactors scoring in

RNAi screens, Melt, was still highly significant at 22.2%. Strik-

ingly, core components of the Akt pathway interact with an

almost equal number of pAkt and pERK regulators (Figure 3D),

revealing the extent of crosstalk between the Akt and MAPK

pathways. Only in the case of Akt interactors did we observe a

moderate difference, with 21 components regulating pAkt, 12

regulating pERK, and 8 regulating both. Comparing InsulinNet-

RNAi with the dynamics of InsulinNet-PPI reveals that pAkt

regulators identified following 10 min of insulin show significant

overlap with the physical interaction data (Figure 3E). Further-

more, we identified eight proteins that specifically associate as

well as regulate pAkt levels 10 min after stimulus, suggesting a

potential mechanism through which these proteins regulate the

pathway (Figure 3E).

Quantitative Phosphoproteomics to Identify Targets of
Insulin Signaling
To identify targets of insulin signaling, we systematically investi-

gated insulin-induced phosphorylation using quantitative phos-

phoproteomics. The phosphoproteomes of S2R+ cells were

analyzed under the same three conditions: baseline and 10-

and 30-min insulin stimulus. In total, we identified 46,483

phosphopeptides from which we localized 3,038 unique

phosphosites with near certainty (Experimental Procedures; Ta-

ble S4). To identify dynamic sites, we normalized the intensities

of 10 and 30 min to baseline. Sites with significant fold changes

compared with baseline were selected as insulin-responsive

dynamic phosphosites (�0.5 % log2 fold change R 0.5).

We identified 266 insulin-responsive dynamic phosphosites

from 191 proteins and refer to this subset as InsulinNet-Phospho

(Table S4). The phosphosites from InsulinNet-Phospho are

classified as ‘‘increase,’’ ‘‘early increase,’’ ‘‘late increase,’’

‘‘decrease,’’ ‘‘early decrease’’ and ‘‘late decrease’’ based on

their dynamic profiles (Figure 4A). The phosphosites of canonical

components increase in response to insulin, including the phos-

phorylation of InR (Y1549 and Y1550), chico (Y860), Pi3K92E

(Y138), and raptor (S1091). In total, we categorized 84, 48, and

44 phosphosites into the increase, early increase, and late in-

crease classes, respectively (Table S4). Together, these repre-

sent 66% of all phosphosites (176 of 266) changing in response

to insulin. On the other end, 22, 49, and 19 phosphosites fell into

the decrease, early decrease, and late decrease classes,

respectively. Among the decreasing phosphosites, more than

half (49 of 90 sites) are in the early decrease class that only tran-

siently decreases 10 min after stimulus.

We observed distinct GO functional enrichment for the

different dynamic classes (Figure 4B). For instance, the increase

class shows enrichment for insulin-regulated functions such as

positive regulation of cell size and growth (p < 0.001). Interest-

ingly, biological processes such as cell differentiation are

enriched in the early increase class, whereas the negative

regulators of cell differentiation are enriched in the early

decrease class. Similarly, the increase and early decrease clas-

ses show enrichment for processes such as cell cycle.
To identify the potential upstream kinases modulating

InsulinNet-phospho, we performed a motif enrichment analysis

using the MotifX algorithm (Chou and Schwartz, 2011). The motif

enrichment analysis reveals that the Akt/S6k consensus motif is

significantly enriched among all classes of increased phosphor-

ylation, implying that Akt1 and/or downstream S6k are active

throughout the duration of the treatment (Figure 4C; Table S4).

We also observe significant enrichment of proline-directed

kinase motifs among the early and late increase classes, sug-

gesting that these sites might be regulated through cyclin-

dependent kinases (CDKs) or ERK. Next we used the Netphorest

algorithm (Miller et al., 2008), which uses an atlas of consensus

sequence motifs to predict kinase-substrate relationships. The

current version of NetPhorest only covers linear motifs for 179 ki-

nases, andwe are using the kinase-substrate predictions only as

suggestive evidence. The analysis revealed that 160 of 266 dy-

namic sites are potential targets of canonical pathway kinases,

including 60 candidate Akt1 targets and 107 candidate S6k tar-

gets (Figure 4D; Table S4). Comparison with a mammalian phos-

phoproteomic dataset revealed that 22.5% of phosphoproteins

in InsulinNet-Phospho are also targets of the mTOR complex in

human and mouse datasets (Hsu et al., 2011; Figure 4E; Table

S4). Such motif enrichment and comparative analyses show

the high quality of the InsulinNet-Phospho dataset.

Next we systematically compared the overlap between

InsulinNet-PPI and InsulinNet-Phospho and identified 52 dy-

namic phosphoproteins physically interacting with the core

components of the pathway (Figure 4F; Table S5). Of those

52 proteins, 18 are hits from RNAi screening (part of the

InsulinNet-RNAi). Interestingly, the non-RNAi hits are signifi-

cantly enriched for InsulinNet-PPI (Figure 4G; Table S4). These

results suggest that RNAi screening and phosphoproteomics

capture different aspects of insulin signaling (Discussion).

Note that even our unfiltered PPI network (with no SAINT score

cutoff) shows significant overlap with InsulinNet-Phospho (101

of 191 proteins) (Figures 4F and 4G; Table S4). Such integra-

tive analysis enables identification of potential targets of the

insulin pathway. For instance, phosphorylation of Pp2A-29B

S139 increases in response to insulin stimulus, and S139 in

Pp2A-29B is also an S6k/Akt consensus motif. Further, the

PPI data suggest that it physically interacts with Akt1,

indicating that Pp2A-29B could be a potential Akt1 substrate.

Finally, we identified 13 proteins, including eIF4G, from

InsulinNet-Phospho, that also overlap with InsulinNet-PPI

and mTOR targets, suggesting that these proteins are involved

in insulin signaling (Figure 4H).

Integrated Insulin Signaling Network
We combined the InsulinNet-PPI, InsulinNet-RNAi, and Insulin-

Net-Phospho datasets to build an integrative insulin signaling

network (InsulinNet) (Figures 5A and 5B; Table S5). Eighteen

proteins in the network overlap within all three datasets; this in-

cludes three proteins from the core pathway (InR, chico, and

Tsc1). Thirty-four proteins comprising the PPI network and their

phosphosites are dynamically regulated by the insulin stimulus,

including PI3K92E. Another 208 proteins are part of the PPI

network and were identified as regulators of the pathway in

RNAi screens. Almost 46% of the proteins in InsulinNet are
Cell Reports 16, 3062–3074, September 13, 2016 3067



Figure 4. Dynamically Regulated InR/Pi3K/Akt Network Components Identified by Quantitative Global Phosphoproteomics

(A) Scatterplot showing the distinct dynamics of the phosphosites that respond to insulin (InsulinNet-Phospho). Phosphosites are indicated in parentheses.

(B) Functional enrichment of the distinct dynamic phosphosites (GO biological process). Boxes filled in red show significant enrichment and gray otherwise.

(C) Consensus motifs enriched among the InsulinNet-Phospho proteins. Red filling indicates a motif enriched in the given dynamic class. The candidate kinases

phosphorylating the sites are indicated. The color code is similar to that in (B).

(D) Network picture summarizing the results from Netphorest. Kinases from the core pathway are shown in orange circles, and the number of phosphosites with

corresponding consensus motifs are shown within the blue nodes.

(E) Comparative analysis of the InsulinNet-Phospho with mTOR-regulated phosphoproteins reported in two previous studies (Hsu et al., 2011; Yu et al., 2011).

(F) Venn diagram showing the overlap between InsulinNet-PPI, InsulinNet-RNAi, and InsulinNet-Phospho. The numbers in parentheses indicate phosphosites.

(G) Enrichment of the overlap corresponding to (F).

(H) Members of the insulin network phosphorylated in response to insulin identified previously as targets in mouse embryonic fibroblasts (MEFs) and HEK293E

cells (Hsu et al., 2011; Yu et al., 2011). The color code is similar to that in (B).
validated by two or more orthogonal assays, demonstrating the

quality and plenitude of the data.

Structure and Dynamics of the Insulin Network
To gain further insights into the structure and dynamics of

InsulinNet, we applied the Protein Complex Enrichment Analysis

Tool (COMPLEAT) (Vinayagam et al., 2013) to organize the

network into protein complexes (Figure 6A). COMPLEAT iden-

tifies protein complexes enriched in a given high-throughput

dataset using a comprehensive protein complex resource. We

applied COMPLEAT to identify protein complexes that are either

stably or dynamically associated with the insulin pathway. Note

that, for the COMPLEAT analysis, we used unfiltered InsulinNet-

PPI (with no SAINT score cutoff) with modified spectral count

values as the input (Experimental Procedures). To identify stably

associated protein complexes, we analyzed all three networks

(baseline and 10 and 30 min) individually, and the complexes
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that were significant (based on COMPLEAT p values) at all three

time points were considered stably associated protein com-

plexes. In total, 548 protein complexes were considered stably

associated (Table S6).

We normalized the modified spectral count values of 10- and

30-min data with baseline (computed log2 fold change values)

to identify the dynamic protein complexes that either associate

or dissociate with the core pathway. COMPLEAT analysis of

10- and 30-min networks were performed individually, and the

results were combined to identify dynamic protein complexes

(Figures 6B and 6C). In total, we categorized 282 dynamic com-

plexes belonging to seven different dynamic classes (Table S6).

Forty-one protein complexes significantly associated with the

core pathway both at 10 and 30 min, and we refer to this class

as ‘‘association complexes.’’ Similarly, three complexes,

including the Wave-2 complex, are dissociated both at 10 and

30 min, and we refer these as ‘‘dissociation complexes.’’ We



Figure 5. Integrated Drosophila Insulin Signaling Network

(A) Pie chart showing the overlap between InsulinNet-PPI, InsulinNet-RNAi, and InsulinNet-phospho datasets.

(B) Network view of the InsulinNet, an integrated and functional insulin network.
identified 47 protein complexes that associate only at 10 min

(early association) and six complexes that dissociate only at

10 min (‘‘early dissociation’’). Similarly, we identified 144 com-

plexes that associate only at 30 min (‘‘late association’’) and 39

complexes that dissociate only at 30 min (‘‘late dissociation’’).

We also found two protein complexes related to translational

elongation that associate at 10 min and dissociate at 30 min

(‘‘early association and late dissociation’’ complexes).

Among those complexes we identified as either stably associ-

ated or dynamically assembled, 17% (143) are curated in the

literature as belonging to those specific protein complexes and

have at least one high-confidence interaction connecting them

to the core pathway. This includes 83 stably associated com-

plexes and 60 dynamic complexes, and the remaining are pre-

dicted complexes from the COMPLEAT resource (Figure 6D;

Table S6). We found that 15 of the 143 complexes are involved

in chromatin remodeling; these include complexes from all four

families of chromatin remodeling complexes (switch/sucrose

non-fermentable [SWI/SNF], nucleosome remodeling factor

[NURF], nucleosome remodeling deacetylase [NuRD], and

INO80).

Next we applied the SignPredictor tool (Vinayagam et al.,

2014) to characterize the activation/inhibition relationships be-
tween the core pathway and interacting complexes (Figure 6A;

Table S6). SignPredictor predicts the activation/inhibition rela-

tionship between the interacting proteins based on phenotypic

signatures from RNAi screens. We extended this framework to

predict the relationship between protein complexes and a

pathway (Experimental Procedures). We used six RNAi screens

generated in this study and 49 published RNAi screens to

construct phenotype signatures. Our analysis reveals that 99 of

143 protein complexes have positive relationships with the insu-

lin pathway (either activate or activated by the pathway),

whereas 36 protein complexes have negative relationships

(either inhibit or inhibited by the pathway) (Figure 6D). Note that

for eight protein complexes we could not predict activation/inhi-

bition relationships. We found a negative association between

complexes, including the Wave-2 complex, Arp2/3 complex,

and different protein phosphatase 2A (PP2A) complexes, and

the pathway, correlating with a dissociation of the complex in

response to stimulus.

Functional Characterization of Protein Complexes
Regulating Insulin Signaling
We focused on characterizing the functionality of the PP2A com-

plex in relation to insulin signaling. PP2A is a heterotrimeric
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Figure 6. Protein Complex Analysis of the Insulin Network and Functional Relationships

(A) Flow chart showing the insulin network annotation framework.

(B) Scatterplot showing the distinct dynamic protein complexes that associate or dissociate with the pathway in response to insulin stimulus. Enriched complexes

were identified using the COMPLEAT tool (Vinayagam et al., 2013), and the dynamics were computed based on the InsulinNet-PPI (unfiltered network)

(Experimental Procedures).

(C) Selected examples of dynamically associating/dissociating protein complexes.

(D) Protein complex view of the insulin network reconstructed using COMPLEAT and SignPredictor tools. The blue and red edges correspond to activation and

inhibition relationships with the pathway, respectively. Green represents stable associations at all three time points.
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Figure 7. Functional Validation of Protein Complexes that Positively and Negatively Regulate Insulin Signaling

(A) Schematic of the PP2A heterotrimeric holoenzyme complex predicted to act as a negative regulator of the insulin network.

(B) Co-immunoprecipitation (coIP) validation of the dynamic interaction between the phosphatase subunit Pp2A-29B and Akt1.

(C) Knocking down Pp2A-29B increases phosphorylated S6k (pS6k) levels, whereas Pp2A-29B overexpression reduces pS6k.

(legend continued on next page)
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complex consisting of the serine-threonine phosphatase cata-

lytic subunit microtubule star (mts), the B regulatory subunit

that determines the substrate specificity, and the scaffold pro-

tein Pp2A-29B (Figure 7A). Note that, in Drosophila, there are

three forms of the B subunits: widerborst (wdb), twins (tws),

and PP2A-B’. Our InsulinNet revealed that the PP2A complex

interacts with the core pathway at baseline and 10 min and dis-

sociates 30 min after insulin stimulation. From the InsulinNet-

RNAi, we observed that Pp2A-29B knockdown elevates the

baseline pERK signal and reduces pAkt activity specifically at

30 min. From InsulinNet-Phospho, we identified dynamic

phosphorylation at Pp2A-29B Ser139, which resides within a

consensus motif for Akt1/S6k (RXXS/T). These observations

suggest that PP2A modulates insulin signaling and, additionally,

that feedback regulation by the pathway may serve to downre-

gulate the complex.

To further characterize these interactions, we independently

validated the interaction between Pp2A-29B and Akt using

co-immunoprecipitation and western blotting (Figure 7B).

Further, knocking down Pp2A-29B in cells using independent

RNAi reagents increased pS6k activity, whereas overexpressing

Pp2A-29B reduces the pS6k levels (Figure 7C). These observa-

tions further support that pS6k is a downstream target of the

PP2A complex (Hahn et al., 2010).

Next we focused on chromatin remodeling complexes, which

represent more than 10% of the insulin-associated complexes

(15 of 143). These include the Brahma complex (also called the

SWI/SNF complex), whichwe showed previously to be an essen-

tial component of insulin signaling (Vinayagam et al., 2013). Here

we identified a role for the Reptin-Pontin complex (Figure 7D), a

subcomplex of the INO80 complex that stably associates with

the insulin pathway and positively regulates its activity.

We confirmed the interaction between Reptin, a core

member of the Reptin-Pontin complex, and S6kII using co-

immunoprecipitation and western blotting (Figure 7E). Next

we examined the role of the Reptin-Pontin complex in ribosome

biogenesis, a key process regulated by insulin/TOR signaling.

In Drosophila, rRNA synthesis, a limiting step of ribosome

biogenesis, is induced by the activation of insulin signaling (Fig-

ure S4; Grewal et al., 2005). Consistent with this, inhibiting PI3K

(with LY294002) or TOR (with rapamycin) resulted in decreased

rRNA synthesis in Drosophila S2R+ cells (Figure 7F). Further,

knocking down reptin or pontin resulted in decreased rRNA

synthesis (Figure 7F), suggesting that the Reptin-Pontin com-

plex functions downstream of insulin signaling to regulate

rRNA synthesis. Next we analyzed the role of Reptin-Pontin in

regulating nucleolar size because the morphology and size of

nucleoli are linked to nucleolar activity (ribosome biogenesis).

Strikingly, knocking down reptin in S2R+ cells reduces nucle-
(D) Schematic of the Tip60 complex, an ATP-dependent chromatin-remodeling c

(E) coIP validation of the interaction of Reptin with S6kII.

(F) Activation of the insulin pathway induces rRNA synthesis in S2R+ cells. Re

Rapamycin, which inhibit PI3K and Tor, respectively, reduce rRNA synthesis. Kno

represented as mean ± SEM, shown for three independent RNAi lines each). GF

(G) Knockdown of reptin, pontin, and domino in Drosophila larval muscles results

the control short hairpin RNA (shRNA) (Dmef2-Gal4 X UAS-GFP dsRNA) panel is id

in both studies were performed at the same time. Muscles are stained with F-ac
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olar size (Figure S5). To query the role of the Reptin-Pontin

complex in vivo, we examined Drosophila larval muscles

because insulin signaling is required for muscle growth and

nucleus and nucleolus size (Demontis and Perrimon, 2009).

Overexpressing InR using the Dmef2-Gal4 driver in the larval

muscle increases nucleus and nucleolus sizes (Figure 7G; Fig-

ure S6), whereas knocking down reptin, pontin, and domino,

which encodes another member of the Tip60 complex, resulted

in smaller muscle fibers and nuclei and highly disorganized

nucleoli (Figure 7G). Altogether, these results confirm that the

Reptin-Pontin complex functions downstream of insulin

signaling to regulate ribosome biogenesis.

DISCUSSION

Webuilt a comprehensive resource of an insulin signaling network

by systematically identifying network components using three

orthogonal datasets generated at three different time points.

Although small-scale insulin networks have been reported previ-

ously (Glatter et al., 2011), our analysis represents the largest

and most comprehensive resource with dynamics information.

Our comparative network analysis showed that the network

recapitulates many known interactions of the pathway, shows

significant overlap with relevant networks, and, importantly, iden-

tifies several new components of the insulin network, including

the PP2A and Reptin-Pontin complexes. Further, we functionally

validated almost half of the network components using RNAi

screens and/or phosphoproteomic datasets, demonstrating the

high quality and comprehensiveness of this resource.

An important feature of this resource is the integrative frame-

work employed for three orthogonal datasets generated under

the same conditions to identify network components. An advan-

tage of such an integrative approach is that it helps to narrow

down high-confidence interactors present in all three datasets.

Such an integrative approach also enables distinguishing

network components that mediate signal propagation, signal

integration, and feedback regulations. For instance, our compar-

ison of RNAi and phosphoproteomics datasets shows that the

proteins that are not hits in the RNAi screen are more likely to

be regulated by the phosphoproteome. This observation intui-

tively makes sense, because the RNAi screens identify nodes

that regulate the pathway, whereas the phosphoproteome

captures the signal propagation upon stimulation.

Another important feature is the dynamics information associ-

ated with the datasets. Our analysis showed that the dynamic

information is necessary to capture relevant interactions. For

instance, the PPI network generated at 10 min identifies many

known interactions, shows that the core components of the

pathway comes together and share common interactors, and
omplex predicted to positively interact with the insulin network.

sults are shown 6 hr after insulin stimulation. Note that both LY294002 and

ckdown of reptin or pontin results in reduced rRNA synthesis as well (data are

P dsRNA was used as a control.

in smaller muscle fibers and nuclei and highly disorganized nucleoli. Note that

entical to that in Figure 4D in Vinayagam et al. (2013) because the experiments

tin, nuclei with DAPI, and nucleoli with anti-Fibrillarin.



indicates that interacting proteins enriched for functions are

more relevant to insulin signaling. Similarly, the hits identified in

the 10-min RNAi screen significantly overlap with PPIs identified

at 10 min. Finally, the early response class phosphosites show

enrichment for Akt/S6k motifs, and these phosphoproteins

significantly overlap with the PPI dataset, suggesting the impor-

tance of building signaling networks at different time points

following stimulation to capture the relevant, dynamic interac-

tions. Although recent phosphoproteomic studies have shown

the need for sub-minute temporal resolution to study signaling

network dynamics (Kanshin et al., 2015), here we show that

the time resolutions chosen in our study capture many functional

interactions. This may be due to the heterogeneity within the cell

population that helped us to capture some of the early changes

that happen before 10 min of stimulus or to sustained activity of

the pathway. Further, we also observed pERK and pAkt levels

reaching a peak 10 min after stimulus, suggesting that our data

capture the relevant insulin signaling dynamics. Altogether,

these examples underscore the richness of information that

can be extracted from the datasets we generated and that

remain to be explored.

In addition to generating comprehensive datasets, we estab-

lished a framework to systematically annotate the insulin

network. First we organized the complex network into protein

complexes. Next we systematically characterized the activa-

tion/inhibition relationships between the complexes and the

insulin core pathway. This annotation framework enabled us

to get a global view of how the insulin core pathway is intercon-

nected to various cellular machineries and protein complexes.

Further, the analysis facilitated the identification of a role for

protein complexes such as PP2A and Reptin-pontin in medi-

ating insulin signaling. This annotation framework is more

generic and can be adapted to other signaling networks as

well.

Although our insulin network is of the highest quality, the false

negatives are still an issue. For example, although we used Tsc1

and gig (Tsc2) as baits, we failed to identify CG6182, a

Drosophila ortholog of TBC1D7, a third component of the Tsc

complex (Dibble et al., 2012). In the case of RNAi screens, all

six screens put together only validated 47% of network compo-

nents. The remaining 53% of non-hits could be due to the redun-

dancies in the network, false positives in the PPI dataset, or false

negatives in the RNAi screens. An independent screen at 60 min

of insulin stimulus identified additional proteins as pAkt and/or

pERK regulators (data not shown), suggesting that more screens

at different time points or more pathway readouts are needed to

comprehensively validate the insulin network components. In

addition, performing combinatorial perturbations will provide a

powerful approach to identify redundancies in the network (Ba-

kal et al., 2008; Fischer et al., 2015; Housden et al., 2015).

In summary, we generated a comprehensive resource of an in-

sulin signaling network. Importantly, we created InsulinNet

(http://fgrtools.hms.harvard.edu/InsulinNetwork/) to facilitate

the query and access InsulinNet-PPI data. Given the conserved

nature of the pathway, we expect that this resource will be useful

to understand mechanism of human diseases, mine cancer da-

tasets such as The Cancer Genome Atlas (TCGA), and identify

novel therapeutic targets.
EXPERIMENTAL PROCEDURES

Tandem Affinity Purification Data Generation and Statistical

Analysis

Briefly, 20proteins from the canonical pathwaywereusedasbait proteins, sub-

cloned into the pMK33-CTAP vector, and transfected to S2R+ cells. Tandem

affinity purification was performed as described previously (Friedman et al.,

2011; Kwon et al., 2013). TAP experiments were performed as three indepen-

dent replicates. All collected MS/MS fragmentation spectra were searched

against a dmel-all-translation protein database (FlyBase Consortium), and pro-

tein hits were calculated on the basis of the number of reversed database hits

above the scoring thresholds. The SAINT algorithm was used to calculate the

probability scores for the interaction between bait and prey observed by MS.

More details regarding experimental procedures and statistical analyses can

be found in the Supplemental Experimental Procedures.

RNAi Screens

RNAi screening was performed to validate novel components of InsulinNet-

PPI as described previously (Friedman and Perrimon, 2006; Friedman et al.,

2011; Kockel et al., 2010). Briefly, S2R+ cells were seeded with double-

stranded RNAs (dsRNAs) targeting genes of interest for 72 hr. Cells were

stimulated with insulin for 10 or 30 min (or not stimulated with insulin for the

baseline condition), fixed, and stained for Akt and ERK activity using an in-

cell western (ICW) assay. Monoclonal pAkt (Ser505) and pERK (Thr202/

Tyr204) antibodies from Cell Signaling Technology were used to quantify the

Akt and ERK activities. To define a hit, we computed the log2 fold change value

of the phospho-antibody signal of a gene compared with the control as

described previously (Friedman and Perrimon, 2006; Friedman et al., 2011;

Kockel et al., 2010). Genes with a log2 fold change R 0.5 are defined as

negative regulators and % �0.5 as positive regulators. Details regarding

experimental procedures and statistical analyses can be found in the Supple-

mental Experimental Procedures.

Phosphoproteomic Analyses

Cells were grown as above for AP-MS experiments, lysed, and processed as

described previously (Sopko et al., 2014). Tandem mass tag (TMT) labeling

was as follows: untreated, TMT126, TMT127; 10 min of insulin, TMT128,

TMT129; 30 min of insulin, TMT130, TMT131. Samples were analyzed on an

LTQ OrbiTrap Velos mass spectrometer (Thermo Fisher Scientific) using a

data-dependent Top10-MS2 method using higher-energy collisional dissocia-

tion (HCD) for reporter ion quantitation. Peptide identification and filtering,

data normalization, and phosphosite localization were performed as described

previously (Sopko et al., 2014). Details regarding experimental procedures and

statistical analysescanbe found in theSupplemental Experimental Procedures.

Computational Analysis

Details regarding computational and statistical analyses corresponding to

motif enrichment analysis, kinase-substrate prediction, comparative network

analysis, GO enrichment analysis, and protein complex enrichment analysis

can be found in the Supplemental Experimental Procedures.

In Vitro and In Vivo Validations

Details regarding co-immunoprecipitation and western blotting, quantitative

real-time PCR, fly stocks, and phenotypic analyses can be found in the Sup-

plemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and six tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2016.08.029.
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