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In recent years many e↵orts have been invested in comprehensively evaluating
the behavior and relationships of all genes/proteins in a particular biological sys-
tem and at a particular state. Here, we review how genome-wide RNAi screens
together with mass spectrometry can be integrated to generate high confidence
functional interactome networks. Next we review the mathematical modeling
methods available today that allow the computational reconstruction of such net-
works. Network modeling will play an important role in generating hypotheses,
driving further experimentation and thus novel insights into network structure
and behavior.

8.1 Introduction

Most biologists study a specific biological problem by investigating the activi-
ties of a limited number of genes or proteins involved in a particular biological
process. This traditional approach is critical and has proven to be extremely
successful to reveal the detailed molecular functions of individual genes and
proteins. For example, genetic studies of embryonic patterning in Drosophila
identified about 40 genes with striking segmentation defects that fell into dis-
tinct phenotypic classes: gap genes, pair rule genes, segment polarity genes, and
homeotic genes (Nusslein-Volhard & Wieschaus 1980). Detailed analyses of the
mutant phenotypes and functions of even this relatively small set of genes led
to a comprehensive molecular framework of the process of embryonic patterning
(St Johnston & Nusslein-Volhard 1992). Reductionist approaches, however, are
not su�cient for generating the big picture of how a biological system, includ-
ing multiple levels of many di↵erent gene products and the interactions among
them, works at di↵erent physiological states or developmental stages (Friedman
& Perrimon 2007). Thus, as our knowledge of individual genes and proteins accu-
mulates, there is a need to comprehensively evaluate the behavior and relation-
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ships of all genes/proteins in a particular biological system and at a particular
state. In recent years, progress has been made in multicellular organisms towards
this goal mostly in tissue culture, a platform that allows a su�cient amount of
homogeneous material to be easily obtained.
Profiling the parameters involved in various biological processes at genome

scale has become a promising strategy to address such a Systems Biology prob-
lem. This approach is now possible due to advances in RNA interference (RNAi),
whereby the functions of all annotated genes in a genome can be systematically
interrogated (Mohr et al. 2010). Furthermore, major technical advances in pro-
teomics, transcriptomics, and cellular imaging now provide sophisticated means
to measure biological parameters quantitatively and at high-throughput scale.
Altogether, these approaches allow the generation of phenotypic signatures for
all genes expressed in a cell of interest that describe their roles in the biological
process under scrutiny. The goal of applying these methods is not only to pro-
vide functional information on the activities of many genes/proteins, but also
to enable the construction of networks that faithfully reflect the dynamics of
biological activities in a particular system. This approach is challenging as both
biological and technical noise can a↵ect the quality of the data sets generated,
and requires in particular robust cellular assays, careful consideration of the
reproducibility of the data generated, integration of orthogonal data sets, and
rigorous computational analyses.
Three types of experimental data sets are most frequently integrated in net-

work construction: transcriptomics, proteomics and interactomics. Transcrip-
tomics provides information about both the presence/absence and relative abun-
dance of RNA transcripts, thereby indicating the active components within
the cell. Transcriptome data measured by genome-wide microarray or RNA-seq
(transcriptome profiling that uses deep-sequencing technologies) is widely used
for network construction, as RNA molecules are easily accessible in comparison
to proteins and metabolites. Proteomics describes the entire population of ex-
pressed proteins in a cell or tissue. It aims to identify and quantify the cellular
levels of genome-wide protein expression in a specific biological system. Inter-
actomics include protein-DNA, protein-RNA and protein-protein interactions
(PPIs). Protein-DNA interactions mainly occur between transcription factors
and their target DNA, whereas protein-RNA interactions depict potential reg-
ulatory roles of specific proteins to target RNAs. PPIs define the fundamental
genetic regulatory network of the cell. They are extremely valuable for network
construction, as with this approach the relationships among interacting proteins
are clearly established, in contrast to the often indirect and sometimes compli-
cated regulation of components within genetic networks. Finally, in addition to
transcriptomics, proteomics and interactomics, the analysis of phenotypic signa-
tures, based on cellular features extracted from image analyses, has emerged as
a powerful method that provides rich phenotypic information on dynamic and
more complex cellular processes, such as nuclear translocation, cytokinesis and
cell migration (Perlman et al. 2004, Bakal et al. 2007).
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Here, we review how some of these methods can be applied today to Drosophila
cells to gain insights on the organization of biological networks. Specifically, we
describe how genome-wide RNAi screens are used to identify gene activities
in the cell that a↵ect the output of a network, then we describe how PPIs,
generated from Mass Spectrometry, can be easily integrated with RNAi data
sets to generate a high confidence functional interactome. Finally, we review the
mathematical modeling methods available which, when applied to the integrated
data sets generated from RNAi and PPI, allow the computational reconstruction
of the network - the goal of which being to generate a number of hypotheses
ultimately driving further experimentations leading to novel insights.

8.2 Identification of network components by RNAi

In Drosophila cells, RNAi knockdown is easily achieved using in vitro syn-
thesized long dsRNAs (typically 150 to 500 bp), and readily adaptable to
screening of cultured or primary cells in miniaturized platforms (e.g. 384-well
plates) (Boutros et al. 2004). Thus, Drosophila cell-based RNAi screening can be
done in high-throughput mode, providing a platform for genome-scale functional
analysis of cellular processes (DasGupta & Gonsalves 2008, Bakal & Perrimon
2010, Falschlehner et al. 2010, Mohr et al. 2010). Information about reagents
and results from Drosophila cell-based RNAi screens is available at a number
of databases, including FLIGHT (http://flight.icr.ac.uk/) (Sims et al. 2006),
GenomeRNAi (http://genomernai.de/GenomeRNAi/) (Gilsdorf et al. 2010) and
FlyRNAi, the database of theDrosophila RNAi Screening Center (http://www.flyrnai.org)
(Flockhart et al. 2006). To date, large number of screens have been performed
in Drosophila cells, yielding insights into a number of biological processes and
systems (Mohr et al. 2010). Researchers often screen grouped sub-sets of genes,
e.g. all genes encoding kinases or genes identified using another high-throughput
method or bioinformatics analysis. However, full-genome screening remains the
most unbiased and comprehensive approach. An important aspect of RNAi screen-
ing distinguishing it from some other high-throughput methods is that RNAi
results not only implicate genes in a given pathway but can also indicate the
direction of action (i.e. a positive or negative regulator in a given pathway).
A wide variety of high-throughput screening methodologies, instruments and

assays are available for RNAi screening ((Shumate & Ho↵man 2009, Mohr et al.
2010); Figure 1). Among the most straightforward to perform and analyze are
total-well luciferase or fluorescence readouts, which are collected using a lumi-
nometer or fluorimeter (plate-reader). These outputs are typically expressed as
a ratio (e.g. of values obtained with a transcriptional reporter versus a ubiqui-
tously expressed control). From these numerical outputs, positive hits are typ-
ically identified after calculating Z-scores and choosing an appropriate Z-score
cut-o↵ value. Researchers often rely on prior knowledge of components of a pro-
cess or system in order to select an appropriate Z-score value. This is often done
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empirically (i.e. I know gene X is involved and reagents targeting X gave a Z-
score of n in the screen; therefore, I will use n as my cut-o↵). However, it can
also be done more systematically, such as using RNAiCut, which is based on the
assumption that gene products corresponding to true positives are more inter-
connected to one another at the level of PPIs (Kaplow et al. 2009). A number
of other types of assays, supported by specialized plate-readers or laser-scanning
cytometers, are similar in that all cells in the well are measured and the data
is in the form of one or more numerical outputs that can be analyzed based on
Z-scores. Among these, the in cell Western approach, in which immunofluores-
cence labelling of a phospho-protein or protein is compared to a total protein
control, has proved particularly useful for interrogation of signal transduction in
Drosophila cells (Friedman & Perrimon 2006, Friedman & Perrimon 2007, Kockel
et al. 2010, Friedman et al. 2011).
Although relatively simple outputs continue to be informative for screening,

researchers are increasingly turning to high-content image-based screens in or-
der to obtain high-quality results relevant to complex phenotypes (Bakal 2011).
Instruments developed for acquisition of high-content screen image data include
automated epifluorescence, fluorescence confocal and laser-scanning microscopes
(Shumate & Ho↵man 2009, Zanella et al. 2010). Most of these instruments im-
age a sub-region of the well and multiple images per well must be acquired in
order to image enough cells for statistically meaningful results. Through the
use of one or more fluorescent dye or antibody, as well as the introduction of
fluorescence protein-tagged fusion proteins or reporters, several di↵erent read-
outs can be simultaneously collected and measured. Even a single image-based
readout such as the DNA dye 4’,6-diamidino-2-phenylindole (DAPI) can be used
to count cells, define the nucleus (e.g. as a reference for detecting nuclear vs.
cytoplasmic localization), measure nuclear area, monitor cell cycle stages, and
more. As screen-imaging instruments facilitate collection of data for several dif-
ferent fluorescent tags, the number of features that can be evaluated singly or in
relationship to one another can be very large. Thus, high-content screening facil-
itates detection of complex cellular and sub-cellular phenotypes, such as changes
in the sub-cellular distribution of a protein, or in the size, shape or number of
cells or organelles (see for example (Bakal et al. 2007)). Importantly, analysis of
multiple parameters can be used to improve the quality of RNAi screen results.
Assessment of the Z factor for analyzed images during assay development, for
example, can be used as a measure of robustness prior to the screen, guiding
optimization of the screen assay (Kummel et al. 2010). Moreover, following im-
age data acquisition, some parameters prove more informative than others in
identifying on-target and relevant cellular responses (Collinet et al. 2010, Kum-
mel et al. 2010). Development in the area of screen image analysis is growing
rapidly. Various academic and commercial groups have developed software tools
useful for analysis of high-content screen datasets, including machine-learning
approaches (reviewed in (Ljosa & Carpenter 2009, Niederlein et al. 2009) (Ljosa
and Carpenter 2009; Niederlein, Meyenhofer et al. 2009)). Following analysis,
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Figure 8.1 Cell-based assays used to describe cellular phenotypes. Several types of
assays and corresponding instruments are available for RNAi screening and other
high-throughput Drosophila cell-based methods. Luciferase levels provide a relatively
simple way to monitor overall induction or suppression of a transcriptional reporter.
Methods such as the in cell Western approach allow for monitoring of endogenous
proteins. With this approach, immunofluorescence levels of a phospho-protein or
protein are compared with levels detected using non-phospho-specific antibody or
total protein dye. High-content imaging allows for detection of sub-cellular protein
distributions, organelles and other features. For high-content imaging, epifluorescence
or confocal microscopy is used to detect one or several cellular and sub-cellular
readouts, followed by single- or multi-parametric image analysis of simple or complex
phenotypes. The complexity of image data requires specialized analysis. In all cases,
phenotypes are reduced through analysis to numerical values such as Z-scores. These
results can then be combined with results from other high-throughput assays, e.g.
mass spectrometry, or with information from the literature in order to build
high-confidence gene networks.

the screen output is reduced to one or more numerical values, which can then be
evaluated using Z-scores or another approach.
Despite the power of the RNAi approach, a variety of caveats apply that are

relevant to the analysis, interpretation and integration of RNAi screen results
in the context of system-wide analyses. Perhaps the most common problems
are systematic errors or bias in the assay; stochastic e↵ects or noise inherent in
high-throughput data sets; and reagent-specific o↵-target e↵ects (Falschlehner
et al. 2010, Mohr et al. 2010, Booker et al. 2011, Seinen et al. 2011). Most
systematic errors are easily addressed prior to primary data acquisition (e.g.
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through correction of instrument-derived dispensing errors) but others persist
and can a↵ect interpretation of results. For example, some cell-based assays
show bias, such as favouring identification of hits in one direction or the other
relative to controlse.g. favouring identification of positive-acting or negative-
acting factors in a pathway (DasGupta et al. 2007). When such a bias exists
and cannot be fully addressed through assay optimization, robust interrogation
of a given network might require screening with more than one assay, i.e. by
performing related assays with opposite biases. In general, screening of multiple
time-points or conditions, as well as screens that combine more than one dsRNA
reagent to look at additive or synergistic e↵ects of double knockdown, can help
reduce false negative discovery. For example, genes whose knockdown results in
weak phenotypes not detected above noise in a single knockdown screen might be
picked up as significant positives when combined in a double-knockdown screen
(Bakal et al. 2008).
Regarding the identification of false positives in RNAi screens, a number of

approaches are available (Figure 8.2). The most rigorous approach to validation
of screen hits is a rescue test, in which a construct that confers gene activity
but can evade the RNAi reagent is tested for the ability to reverse the observed
phenotype. For many screens, initial positive hits are re-tested with two or more
unique reagents per gene in order to filter out potential false positive results.
An additional filter that can be applied is to remove initial positive hits for
which there is no evidence of gene expression in the cell line that was tested,
with the underlying assumption that reagents targeting genes for which there
is no evidence of expression are more likely to be exerting their e↵ects through
o↵-targets (Booker et al. 2011). Informatics-based analysis of reagent quality
(e.g. number of predicted o↵-targets) can also be taken into account in assessing
primary screen data. However, the experimental approaches are impractical to
apply at large scale, and the systematic approaches can limit but not eliminate
false discovery. As a result, systematic and robust detection of false positive
and negative results is simply not practical to do for all genes tested in a large-
scale RNAi study. Thus, in general, a researchers curated list of positive results
from an RNAi screen is likely to be based upon a combination of statistical
analysis, experimental verification, and/or prior knowledge of the process or
pathway under study, and genome-wide information is usually only available in
the form of analyzed but unverified primary screen data (e.g. Z scores for all
primary hits). In addition to these methods overlapping orthogonal data sets
with RNAi results, as describe below, provide a powerful filter to identify high
confidence network components.

8.3 Identification of network components using Proteomics

PPIs play critical roles in many cellular processes, such as signaling cascades
and regulatory complex formation. In addition, information acquired from PPI
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Figure 8.2 Validation and integration of RNAi screen data can help identify
high-confidence gene networks. Full-genome screening allows researchers to identify
screen hits (positive hits), reducing the candidate gene list to a more manageable size.
Subsequent to the screen, experimental validation, as well as integration and filtering
with other data sets, can be used to identify a high-confidence set of genes likely to be
involved in a given process or pathway. Commonly used methods for experimental
validation include testing with more than one unique dsRNA reagent per gene,
testing for concordance between quantitative reverse transcriptase PCR (qPCR)
analysis of mRNA knockdown and observed phenotypes, and RNAi rescue tests.
Commonly used computational approaches include comparison of the set of screen
hits to evidence for gene expression (with the assumption that reagents targeting
genes known to be expressed are more likely to be exerting on-target e↵ects), and
integration with the results of other high-throughput studies, such as mass spec
analyses, or information culled from the published literature.

data is definitive (i.e., proteins A and B interact with each other) and can con-
tain quantitative features (i.e., the strength of interactions), making PPI data
a core resource for network construction. Hence identifying all functional PPIs
is not only important for understanding the structure and function of biological
systems, but also for the construction of reliable networks.

Although classic biochemical experiments based on co-immunoprecipitation
can readily identify interactions between specific proteins, they lack the abil-
ity to explore interactions at whole proteome scale. In recent years, several
techniques measuring proteome-wide PPIs have been developed. Two methods
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in particular facilitate high-throughput studies, the yeast two-hybrid approach
(Fields 2005) and tandem a�nity purification coupled with mass-spectrometry
(TAP/MS) (Gavin et al. 2006, Krogan et al. 2006, Jeronimo et al. 2007). The
yeast two-hybrid approach is a useful approach for high-throughput identification
of putative interaction partners, but it can be prone to false-positive identifica-
tion and interactions are detected in a heterologous context. Thus, TAP/MS
analysis has been increasingly used to identify novel and large-scale PPI under
physiologically relevant conditions (Gavin et al. 2006, Krogan et al. 2006, Jeron-
imo et al. 2007).
TAP and MS are two essential components of the TAP/MS technique. TAP

e�ciently isolates native protein complexes from cells for proteomics analysis.
It is followed by MS analysis, a powerful analytical technique used to determine
the molecular structures of peptides. The advantage of MS is that it identifies
multi-subunit protein complexes isolated from the cell lysate with extremely high
sensitivity and accuracy. The TAP/MS approach has been used successfully to
characterize protein complexes from various cells and multi-cellular organisms.
In addition, this technique can be combined with quantitative proteomics ap-
proaches to better understand the dynamics of protein-complex assembly. As
will be discussed below, TAP/MS can also be integrated with RNAi data, so
that high confident and even dynamic networks can be reconstructed.
To study pathway-specific interactions, special cell lines need to be generated

first, with each cell line stably expressing a TAP-tagged version of a starting
protein of interest (the bait protein), such as a major signaling component. The
reason for tagging the components is to facilitate isolation of those components
later. Along with the special cell lines, a negative control cell line (i.e., not
expressing any TAP-tagged proteins) is recommended for subtracting nonspecific
interactors. Both types of cells are treated with specific conditions to produce
proteins lysates. The lysates are incubated with a�nity purification beads, where
the TAP-tagged protein is pulled down via its tag, together with associated
proteins (the prey proteins) and other proteins retained through non-specific
binding. The protein samples collected are then broken down into peptides with
proteases and analyzed by MS, where a list of peptide sequences from each
sample is reported as the results. A necessary data pre-processing step is to
identify the source proteins of the peptide sequences and calculate the number
of peptides for each prey protein identified in each sample. To increase confidence
in PPI identification, multiple replicates are recommended for each cell line and
condition.
Early TAP/MS analytic methods identify PPIs by binary mode (i.e., indi-

cating the presence or absence of a specific protein) (Zhu et al. 2007). Newer
methods take into account quantitative information such as the label-free quan-
titative spectral count (SC), which is the number of peptides detected in MS.
The challenge for TAP/MS data analysis is to minimize false-positive interac-
tions and increase the sensitivity to identify true interactions. Currently, there are
three popular computational tools for TAP/MS data analysis: NSAF (Normal-
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ized Spectral Abundance Factor) (Sardiu et al. 2008); CompPASS (Comparative
Proteomic Analysis Software Suite) (Sowa et al. 2009); and SAINT (Significance
Analysis of Interactome) (Choi et al. 2011).
NSAF estimates the relative abundance of proteins based on the total number

of peptides (i.e. SC) identified in the sample. In general, larger proteins are
expected to generate more peptides and hence a larger SC than smaller proteins.
To account for the variation of protein size, the SC for each protein is divided
by the protein length, which is defined as the spectral abundance factor (SAF).
Individual SAF also needs to be normalized by the sum of all SAFs for proteins
in the sample to accurately account for run-to-run variation (Eq. 8.1).

NSAF (i) =

⇣
SCi
Li

⌘

PN
i=1

⇣
SCi
Li

⌘ (8.1)

The NSAF for a protein i is the SC of a protein divided by the proteins
length (L), divided by the sum of SC/L for all N proteins in the experiment.
NSAF is simple, easy to compute and has been demonstrated to be e↵ective in
detecting significant PPI. However, NSAF is an empirical transformation of SCs,
which does not incorporate any information from negative controls. Moreover, it
does not add weight to interactions that are detected in all biological replicates
(most likely true interactions) and does not penalize interactors detected in all
purifications (e.g. sticky proteins that interact with all bait proteins). Thus,
although NSAF is useful to some extent, it clearly needs further improvement.
The CompPASS method computes PPI scores by adjusting observed SCs rel-

ative to the reproducibility of detection across biological replicates, as well as
the frequency of observing the prey protein in purifications with di↵erent baits.
The first step in CompPASS is the generation of a Stats Table (Table 8.1). In
the table, each row is the unique protein identified from the TAP/MS experi-
ments (interactor) and each column is the bait protein used in those experiments.
Each element of the table is the SC of an interacting protein from the particular
baits TAP/MS experiment. After the stats table is created from all experiment
runs in the project, CompPASS calculates a mean value of the SC (M) for each
interactor, then calculates a Z-score and D-score for each interaction pair.

Table 8.1 Stats Table in ComPASS analysis

Bait1 Bait2 Bait3 Bait4 Bait k Mean
Interactor 1 X1,1 X1,2 X1,3 X1,1 X1,k M1

Interactor 2 X2,1 X2,2 X2,3 X2,4 X2,k M2

Interactor 3 X3,1 X3,2 X3,3 X3,4 X3,k M3

Interactor n Xn,1 Xn,2 Xn,3 Xn,4 Xn,k Mn

The first score is the Z-score, which is specific for a particular interaction;
the mean is subtracted from the SC, and is divided by the standard deviation (
Eq. 8.2 and 8.3). X is the SC, i is the bait number, j is the index of interactor,
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Table 8.2 Advantages and disadvantages of network models

Information
theory
model

Boolean
Network

Di↵erential
Equations
Model

Bayesian
Network

Dynamic
Bayesian
Network

Simplicity Yes Yes No No No
Low computa-
tional cost

Yes Yes No No No

Multiple genes
participate in one
function

No Yes Yes Yes Yes

Directed/ Undi-
rected

Undirected Directed Directed Directed Directed

Large dataset
needed

No No Yes Yes Yes

Deterministic/
Stochastic

DeterministicDeterministicDeterministicStochastic Stochastic

Handle incom-
plete data

No No No Yes Yes

Handle feedback
loops

No No No No Yes

n is the total number of interactors, k is the total number of baits, M is the
mean of the SC and � is the standard deviation of the SC for each interactor.
Although the Z-score can identify interactors for which the SC is significantly
di↵erent from the mean, it fails to discriminate two interactors with dramatically
di↵erent SCs if the experiment has only one replicate. For example, if in a single
experiment, the SCs for A and B SC are 2 and 20, respectively, then the two
proteins will have the same Z-score, as the mean and standard deviation are the
same for a single data point.

Zij =
Xij �Mi

�i
, where Mi =

1

k

kX

j=1

Xij . (8.2)

The second is the D-score (Eq. 8.3), which takes into account both the repro-
ducibility of detection across biological replicates and the frequency of observing
prey protein in purifications of di↵erent baits. The variables are the same as
for Eq.s 8.2 and 8.3. Here, f is a term which is 0 or 1 depending on whether
or not the interactor was found a given particular bait.

P
f is the summation

across all baits. k/
P

f is the frequency of this particular interactor across all
baits. P is the number of replicate runs in which the interaction is present. The
reproducibility term allows for better discrimination between a likely false pos-
itive (i.e. an interactor found in a one run but not in any of the other multiple
replicates) and a likely true positive (i.e. an interactor with a low SC yet found
in all replicates).
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Di,j =

vuutXij

 
k

Pk
i=1

fij

!p

wherefij =

(
1 if Xij > 0

0 else
(8.3)

CompPASS is easy to compute and takes into consideration two important
factors: reproducibility and the frequency at which each interactor is detected
in multiple replicates. It uses a di↵erent approach to distinguish the background
and real interactors rather than directly utilizing the negative control datasets.
Further, CompPASS takes a maximum of 2 replicates which might not be enough
for some experiments with large variance in their biological replicates.

The SAINT approach assigns a confidence score to a PPI by converting the
normalized SC into the probability of a true interaction between the two proteins.
The parameters for true and false distributions, P (Xij |true) and P (Xij |false),
and the prior probability of interactions in the dataset, P (true) and P (false),
are inferred from the normalized SCs for all interactions that involve prey i and
the bait j. The posterior probability of a true interaction, P (true|Xij), can be
calculated from parameters using Bayes rule (Eq. 8.4).

P (true | Xij) =
P (Xij |true)P (true)

P (Xij |true)P (true) + P (Xij |false)P (false)
(8.4)

SAINT modeling can be performed with or without negative control data.
When negative controls are not available, the distribution of false interactions can
be estimated in reference to the quantitative information for the same interactor
across purifications of all other baits in the dataset. When TAP/MS data contains
negative controls, SAINT estimates the SC distribution for false interactions
directly from the negative controls. The incorporation of negative control data
improves the robustness of modeling, especially for small datasets.

The SAINT model is based on label-free quantification using the SC. It con-
structs separate distributions for true and false interactions to derive the proba-
bility of a bona fide PPI. The probability model can also be used to estimate the
false discovery rate (FDR), and can be extended to model other types of quan-
titative parameters such as peptide ion intensity. However, SAINT specifically
excludes proteins with 1-2 SCs. The necessity of this arbitrary step is question-
able. Moreover, the complicated reference procedure in SAINT demands high
computational costs.

Overall these approaches can e↵ectively analyze TAP/MS datasets, but they
also have room for improvement. For example, NSAF and CompPASS compute
scores based on the transformation of SC, and SAINT demands high computa-
tional costs largely due to its complicated reference procedure. New algorithms
should be investigated in the future that eliminate false positives more e↵ectively
and that require lower computational costs.
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8.4 Integration of RNAi and Proteomic data sets

RNAi provides information about which genes a↵ect the activity of a network.
However, many gene activities can a↵ect the activity of a network indirectly (e.g.,
general maintenance activities such as those related to overall protein translation
or stability). In addition, as discussed above, although methods are available to
ensure that RNAi e↵ects are on target, such as genomic rescue, the most rigorous
validation approaches can be tedious and are not commonly used large-scale for
validation of RNAi results. Proteomic data sets, which frequently reflect the
interactions among di↵erent proteins at a genome-wide scale, can help address
both of these issues, as the integration of RNAi and proteomic data sets can
facilitate validation, leading relatively quickly to a high confidence functional
interactome.
Di↵erent data sets are usually ranked using di↵erent types of scores (e.g.,

Z-score is used to evaluate the result of RNAi screens; a probability value or p-
value is generated from TAP/MS data sets by various analytic methods). Thus,
the first challenge in integrating RNAi and PPI results is to combine di↵erent
data sets with di↵erent scoring functions. One common approach is to choose
appropriate cut-o↵ value (threshold) for each data set and integrate them using
the voting system (Zhong & Sternberg 2007), in which a simple statistical model
is used to integrate multiple data sets in the absence of data training. Basically,
with this approach, gene/protein that appears in each data set gets one vote, and
the total number of votes are computed and used to determine either inclusion
or exclusion from the network. When the threshold vote number equals the total
number of data sets (i.e., scored in all data sets), the system becomes a filtering
model and only the intersection of all data sets is selected. When the threshold
is set to one, the system selects the union of all data sets. The threshold directly
a↵ects both the false positive and false negative rates in the final data integration
results, and should be set according to di↵erent analytic purposes. A small value
of the threshold will give rise to a relative complete network, but more errors
might be associated. On the other hand, high threshold value can generate a
high confident network, but it might also eliminate some useful information.
Because of the simplicity of the voting system, and because there is no re-

quirement for a training data set, it has been extensively used in a variety of
investigations (Walhout et al. 2002, Gunsalus et al. 2005). For example, in a
recent study of the canonical receptor tyrosine kinase (RTK)/RAS/extracellular
signal-regulated kinase (ERK) pathway in Drosophila (Friedman et al. 2011), a
comprehensive network was integrated by combining unbiased ERK activation
genome wide RNAi screens with TAP/MS network structural data. In this study,
RNAi screen results were filtered using interactors identified in the PPI network
in order to achieve significant enrichment of pathway regulators. The results
showed that about 50% the filtered PPI network scored in the RNAi screens.
The integration of multiple data sources improves the specificity and reliability

of individual high-throughput data sets. It can also be an e↵ective approach to
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reduce the level of false negative discovery (i.e. protein complexes identified in the
network reconstruction can guide experimental validations of some interactions
not scored in the original TAP/MS data sets). Furthermore, by combining RNAi
and TAP/MS data sets with time-course measurements, aspects of the dynamic
regulation of the network can be revealed.

8.5 Network modelling: The next step

Following the construction of a network involved in a particular biological pro-
cess (e.g., the Drosophila RTK/ERK network; (Friedman et al. 2011)), involves
network reconstruction using mathematical modeling. Network reconstruction
aims to build a mathematical model through a learning algorithm, so that the
output of the model fits with provided biological data, and the relationships of
the network components (genes/proteins) are clearly defined. Essential in this
network reconstruction process is a solid computational analysis, which involves
data preparation, network architecture selection, and structure and parameter
learning. Data preparation is the fundamental step and largely determines the
quality of the analysis outcome. Appropriate network model selection depends
on both the available data type and the aims of the computational analysis. The
final network can be built through a repetitive structure and parameter learning
and refining processes (illustrated in Figure 8.5). A good network not only de-
picts the detailed regulation of its components but also provides high-confidence
and promising directions for future experimental design.

8.5.1 Data Preparation

Good data preparation is key to network reconstruction and a balancing act. On
one hand, in order to minimize experimental e↵orts and costs, the number of
experiments conducted should be minimal; on the other hand, accurate recon-
struction of biological network demands a considerable quantity of reliable data.
In determining the amount of data required for network inference, the complex-
ity of the system and the quality of the network are integral and related factors
(Hecker et al. 2009). Generally, the quality of a network largely depends on the
quality of the given data. Large variation and high levels of measurement noise
in the experiment data will impair the quality of constructed network. Thus, it
is important to carry out multiple replicates to minimize the e↵ects of variation
and noise. Incorporation of a larger number of parameters allows a network to
more accurately represent the complexity of a system; however, this requires
collection of a larger amount of experimental data and also adds to the total
computational time.
Data pre-processing is an important step in data preparation. It directly a↵ects

both the performance of the network inference algorithms and the inference
results. Methods for data preprocessing need to be applied selectively according
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Data Preparation

Computational Network
Experiment

Hypotheses Network Architecture

Structure and Parameter

Figure 8.3 Biological experimenting and computational network reconstructing cycle.
Hypothesis-driven biological experiments are analyzed by computational approaches,
aiming to reconstruct underlying network. This involves Data preparation, Network
Architecture Selection, Structure and Parameter Learning steps. The inferred network
improves our understanding of biological systems and further aids the guidance for
future experimental designs. A new round of experiments enables further
improvement of subsequent network construction.

to di↵erent data types, experimental designs, and network inference methods. For
instance, certain methods only allow for input of binary numbers, so measured
expression levels have to be converted into two discrete expression values. Other
methods require time-series data, so the appropriate interpolation of experiment
data at di↵erent time points has to be conducted during data preprocessing.

In general, to construct a reliable network while also limiting network complex-
ity and computation time, the following strategies should be considered in data
preparation (Hecker et al. 2009). First, the amount of data should be increased
either by increasing the number of measurements or through data integration.
Second, the number of network components should be reduced by grouping to-
gether genes/proteins with similar functions. Third, the number of network pa-
rameters should be restricted so that the dimensionality of the network search
space can be reduced. And finally, specific prior knowledge from various sources
should be incorporated to reduce the number of parameters.
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8.5.2 Network Model Selection

To reconstruct a network, it is important to start with an appropriate type
of network model. Network model adopts the mathematical function to depict
the general behavior of the network components. Most network model can be
represented by a graph containing both nodes and edges. The nodes represent
network components (e.g. genes, proteins or protein complexes), and edges be-
tween nodes represent the interactions between network components. Edges are
either directed (indicating the directionality of the interaction, for example, if
we have A ! B, node B is regulated by node A) or undirected (indicating
presence/absence of the interaction, for example, if we have A–B, nodes A and
B interact). Once the network model is defined, details of the model will be
learned from the experimental data: the network structure illustrates the in-
teractions among all the components in the system and the model parameters
characterize di↵erent aspects of the interactions, e.g. their types/strength.

Several network models have been proposed over the past few years. These
models make distinct assumptions about the underlying molecular mechanisms
with varying degrees of simplification. In these network models, the activity of
a component can be represented by Boolean (0 or 1), discrete (e.g. 1, 2, 3), or
continuous (real) values; the type of relationships between the variables (A and
B) can be directed (A ! B) or undirected (A—B), linear (e.g. A = ↵

1

B + ↵
0

)
or non-linear (e.g. A = B2). The type of model can be deterministic or stochas-
tic, static or dynamic. A deterministic model always predicts the same outcome
when the initial conditions are the same, whereas a stochastic model character-
izes the probability distribution of possible outcomes. Dynamic models generally
define a parametric model of interactions and try to estimate the parameters
from di↵erent time points (e.g. time course gene expression data). Static models
characterize causal interactions that are consistent across the measurement (van
Someren et al. 2002).

Currently there are five distinct and widely used network models (Figures 8.5.2
and 8.5.2): Information Theory model, Boolean Network, Di↵erential Equation
Model, Bayesian Network (BN) and Dynamic Bayesian Network (DBN). The
strengths and weaknesses of these network models will be addressed below (sum-
mary in Table 8.2).

The Information Theory Model is one of the simplest network models ’citeStu-
art2003. It represents the regulatory system with an undirected graph, in which
nodes represent components of the system and edges are interactions between
components. Simplicity and low computational costs are the major advantages of
information theory models. It has been widely applied to study global properties
of large-scale regulatory systems. However, a drawback of this model is that it is
static and cannot adequately account for complex regulation involving multiple
gene/protein components.

A Boolean network is a discrete dynamical network (Kau↵man 1969). It can
be represented as a directed graph, in which nodes represent components of
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Information Theory Model
Correlation Coefficients:
A – B = 0.58
A – C = – 0.58
B – C = 1.0

System of Equations
Difference Equations:
A[t+1] = 0
�ሾ�൅ͳሿ�ൌ�ͲǤ͵�ή��ሾ�ሿ
�ሾ�൅ͳሿ�ൌ�Ȃ�ͲǤʹ�ή��ሾ�ሿ�൅�ͲǤ͵�ή��ሾ�ሿ

Boolean Network
Boolean Functions:
B[t+1] = A[t]
C[t+1] = – A[t] and B[t]

Bayesian Network
Conditional Probabilities:

  Exp1 Exp2 Exp3 ...
Gene A  32 53 11 ...
Gene B  2 34 0 ...
Gene C  34 23 33 ...

A

B C
P (B| A) A = 0 A = 1

B = 0 0.99 0.01
B = 1 0.01 0.99

Data

Model graph

Figure 8.4 Overview of network models

A

B C

A0

B0 C0

A1

B1 C1

Static BN

Loop is not allowed t0 t1

Dynamic BN

Figure 8.5 Di↵erences between static and dynamic Bayesian Networks (BNs). A
feedback loop from gene A to gene B to gene C and back to gene A is not allowed in
static BNs. However, this feedback loop can be represented in a dynamic BN by
separating the feedback edges in two time slides.

the system and take one of two discrete values (true or false). Edges between
nodes can be represented by Boolean functions made up of simple Boolean op-
erations, e.g. AND, OR, NOT. The Boolean network allows e�cient analysis of
large regulatory networks. It is relatively easy to interpret, has directed edges,
and allows multiple genes to participate in the network, and more importantly,
it is dynamic. Boolean networks require the transformation of continuous gene
expression signals to binary data. This can be performed, for instance, by clus-
tering and thresholding using support vector regression (Martin et al. 2007).
Despite these features, Boolean network is generally criticized because it only al-
lows for two discrete expression levels, clearly an over-simplification of biological
processes.

The Di↵erential Equation Model represents changes in gene or protein expres-
sion as a function of the expression level of other molecules and environmental
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factors, and has been widely used to analyze genetic regulatory systems. This
model can adequately account for the dynamic behavior of networks by incor-
porating time-dependent variables, ranging within the set of non-negative real
numbers. There are two types of di↵erential equations: linear and non-linear.
Linear di↵erential equations can be simply represented as linear algebraic equa-
tions. However, the simplification obtained by linearization is not su�cient to
identify large-scale networks, and complex dynamic behaviors such as stable os-
cillatory states cannot be explained using simple linear systems. In contrast,
non-linear di↵erential equations can well explain the complicated cellular reg-
ulation systems. However, non-linear functions present two major challenges.
First, mathematical di�culties are associated with non-linear functions for pa-
rameter identification. Second, reliable identification of non-linear interactions
normally requires a very large data size. Thus, inference of non-linear systems
usually employs predefined functions that reflect prior knowledge to decrease the
computational e↵ort needed. But still, the problem of data insu�ciency limits
the practical relevance of non-linear models. Nevertheless, di↵erential equations
have directed edges, allow multiple genes to participate in the regulation and
are dynamic, such that they are good candidates for simulating gene regulatory
events.
A Bayesian network (BN) represents a set of random variables and their condi-

tional dependencies via a directed acyclic graph (DAG), which is a directed graph
without feedback loops. The nodes of the graph represent molecular components
and its edges represent the causal relationships between molecular components.
The relationships are quantitatively encoded in the parameters representing the
conditional probabilities (e.g. the probability of a gene being up/down-regulated
given the status of other components connecting to the gene). Unconnected nodes
represent variables that are conditionally independent of one another. BNs can
handle di↵erent types of data (e.g. discrete and continuous expression data) and
their inference does not require discretization of the data. Nodes in BNs can have
multiple parents, such that multiple gene participation is allowed. The approach
makes use of the Bayes rule and can be used to reflect the stochastic nature
of gene regulation (Werhli & Husmeier 2007). However, the BN is static, the
learning process needs relatively large datasets, and the computational cost of
the approach is relatively high. Moreover, similar to other network models men-
tioned above, BNs cannot handle feedback loops, which are an intrinsic feature
of many biological systems.
The Dynamic Bayesian Network (DBN) is similar to BN except DBN is able

to model dynamic behavior of networks and feedback loops, which occur fre-
quently and are an essential property of many biological systems. DBN adopts
the Hidden Markov Model (HMM), a stochastic probability model with hidden
variables (Churchill 1989, Rabiner 1989) to model feedback loops by breaking
them down into multiple time slices (Figure 8.5.2). DBNs can also handle hetero-
geneous, incomplete or noisy data (Sun & Hong 2007). Its probability function
fits well with the stochastic nature of gene regulation. The drawback of DBNs is
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that the learning process needs large time-series datasets and the computational
complexity is very high.

8.5.3 Network Inference

Network inference is achieved through both parameter learning and structure
learning. Learning starts with a candidate graph of relationships (a good start
will be a graph bearing prior knowledge), followed by parameter learning and
structure learning. In parameter learning, the best parameters for each node need
to be determined from a given graph and experimental data. And in structure
learning, each candidate model is scored according to the graph and the learned
parameters. The higher the score, the better the network structure fits the pro-
vided data. The final network structure inference result is usually represented
by the graph with the highest score, a Bayesian average of multiple graphs, or a
distribution of graphs.

8.5.4 Challenges in Network reconstruction

There are considerable challenges in computational network reconstruction from
biological data. First, the large scale of data from these experiments has in-
herent variability, as reflected by systematic errors (bias) and stochastic e↵ects
(noise) (Hecker et al. 2009). Systematic errors can be nearly eliminated by data
normalization. Stochastic e↵ects cannot be completely corrected by data pro-
cessing, but can be minimized by the application of repeated measurements.
Second, many data from biological experiments are incomplete. For example,
proteomics data does not contain gene expression information; vice versa. For
most biological systems, it is impossible to collect a complete set of data cov-
ering every possible measurement. Thus, data integration should be applied to
make maximal use of the available data, and the appropriate network models
capable of handling incomplete data sets (e.g. DBN) need to be adopted. Third,
even for a simple organism, the functional regulation network is complex, as the
activity of gene products is regulated by many factors, including transcription
factors (TFs) and co-factors that influence transcription, processing of proteins
and transcripts, and/or post-translational modification or turn-over of proteins.
Moreover, positive and negative feedback add further complexity to the regula-
tion of the network. Finally, the inclusion of large datasets and high degree of
network complexity inevitably drive up computational costs. Therefore, depend-
ing on the model quality and complexity, the available data and the intended
application of identified networks, the suitable model architecture should be
carefully chosen in order to e�ciently achieve the best results.
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A B

Source node

Bridging node

Fragile node

Bridging node

Predicted member
of the !ow path

Target node

Figure 8.6 Application of network models. A) Schematic representation of a signal
flow path predicted by network modeling (from a directed network). Yellow nodes are
source nodes, which are known experimentally to be part of the signal flow. Green
nodes are target nodes, where signals converge. The grey nodes are hidden nodes,
which are predicted to be part of the signal flow. B) Schematic representation of
bridging nodes, which connect two modules. Here, the flow model is applied to an
undirected network to distinguish between bridging nodes and fragile nodes (i.e.
nodes that have high-betweenness).

8.6 Applications of network reconstruction

We expect mathematical modeling of networks to play an important role in gener-
ating hypotheses, driving further experimentations and providing novel insights.
Some instructive examples come from studies in other organisms. Bonneau et al.
were able to reconstruct a significant portion of the regulatory network of the
archaeon Halobacterium NRC-1 by integrating genome annotation and gene ex-
pression profiles (Bonneau et al. 2006). Several predictions made by the learned
network were experimentally tested and verified. Lorenz et al. demonstrated the
value of using automatic network inference to identify the regulators of complex
phenotypes such as aging (Lorenz et al. 2009). They applied their method to
reconstruct interactions in a 10-gene network from the Snf1 signaling pathway,
which is required for expression of glucose-repressed genes upon caloric restric-
tion. They also experimentally validated a few predicted interactions, including
the demonstration that Snf1 and its transcriptional regulators Hxk2 and Mig1
act as modulators of lifespan. Kaderali et al. developed a Bayesian learning ap-
proach that infer pathway topologies from gene knockdown data using Bayesian
networks with probabilistic Boolean threshold functions (Kaderali et al. 2009).
They demonstrated the power of their results using RNAi data from the Jak/Stat
pathway in a human hepatoma cell line. Hong and colleagues reached beyond
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network reconstruction in single cells and developed a theoretical framework for
automatic inference of multicellular regulatory networks (in this case, for C. el-
egans vulval development) by integrating heterogeneous biological data (such as
PPIs and gene knockout/knockdown phenotype data) (Sun & Hong 2007, Sun
& Hong 2009). The reconstructed model was capable of simulating stochastic
C. elegans vulval induction under many di↵erent genetic conditions, and hence
allow researchers to gain systematic view about how animal development is dy-
namically regulated by interacting cells through complex networks of proteins
and genes.
To date, most studies have applied modeling to relatively small networks,

centered around one or two pathways. A comparison of two pathway-centered
networks can be used to help identify the main routes of pathway cross talk (see
review by Hughey et al. (2010)). Simple flow-based models have been used to
analyze larger networks. For instance, modeling signal propagation within mam-
malian hippocampal CA1 neurons revealed global properties of regulation, such
as point of signal branching, positions of positive and negative feedback loops
within the network (Ma’ayan et al. 2005). An application of network modeling
is to go beyond direct observations that can be made from the data and uncover
novel components of a cellular response, providing new insights into the biological
processes under study. For example, a recent study in yeast integrates genetic
perturbation data with protein-protein and protein-DNA interaction networks
to predict probable signal flow paths (Huang & Fraenkel 2009, Yeger-Lotem
et al. 2009). The model characterized the highest probable flow paths in the
PPI network by connecting genetic hits identified from perturbation screens to
the corresponding expression changes, revealing novel components within such
flow paths. More recently, flow-based network modeling was applied to iden-
tification of novel human phospho-ERK modulators (Vinayagam et al. 2011).
The flow model used known pERK modulators as source nodes. Hidden nodes
downstream of multiple source nodes were predicted to be novel pERK modu-
lators, prediction that was subsequently validated in a cell-based assay. In the
context of the Drosophila screens described above these approaches now need
to be implemented to gain further insights into the structure of the signaling
networks.
Predicting novel drug targets is another key application of network models.

Network-centered drug-discovery platforms are still in their infancy but some
progress has been made. Biological networks are robust in response to removal of
most nodes due to redundancy. However, non-redundant nodes appear to be more
vulnerable. Network models may facilitate prediction of robust and vulnerable
targets based on the network structure. A drug might be e↵ective if it hits a
point of fragility in the network; however, targeting an unexpected or extreme
point of fragility might lead to more troublesome drug side-e↵ects or toxicity
(Figure 6). Thus, the goal for network modeling is to find a set of nodes that
are critical in the network structure but at the same time, not so critical that
targeting them is likely to lead to global functional impairment (Kitano 2007,
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Fliri et al. 2009, Schadt et al. 2009). Flow-based models have been proposed
to identify bridging nodes (Figure 6), which link two modules. Targeting such
nodes only prevents information flow between the modules of interest, not global
impairment (Hwang et al. 2008). Recent advancements in developing tools to
control complex networks (Liu et al. 2011) will o↵er a radically new way to
develop network based drug targets. It will be exciting to see how increasingly
sophisticated and accurate models contribute to our ability to design new avenues
of research and gain novel insights into biology.
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