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SUMMARY

In Drosophila, the fat body (FB), a functional analog
of the vertebrate adipose tissue, is the nutrient
sensor that conveys the nutrient status to the
insulin-producing cells (IPCs) in the fly brain to
release Drosophila insulin-like peptides (Dilps). Dilp
secretion in turn regulates energy balance and
promotes systemic growth. We identify Unpaired 2
(Upd2), a protein with similarities to type I cytokines,
as a secreted factor produced by the FB in the fed
state. When upd2 function is perturbed specifically
in the FB, it results in a systemic reduction in growth
and alters energy metabolism. Upd2 activates JAK/
STAT signaling in a population of GABAergic neurons
that project onto the IPCs. This activation relieves the
inhibitory tone of the GABAergic neurons on the
IPCs, resulting in the secretion of Dilps. Strikingly,
we find that human Leptin can rescue the upd2
mutant phenotypes, suggesting that Upd2 is the
functional homolog of Leptin.
INTRODUCTION

Integration of information regarding nutrient status with other

physiological processes, such as systemic growth, energy

expenditure, feeding, and reproduction, is a complex function

performed by multicellular organisms. Disruption of this funda-

mental homeostatic process can lead to a number of disorders,

in particular obesity, anorexia, and diabetes (Morton et al., 2006).

In addition, it can have profound effects on cancer and aging

(Hursting et al., 2003).

Insulin peptides are key hormones involved in the regulation of

carbohydrate and lipid metabolism, tissue growth, and longevity

(Taguchi and White, 2008). Circulating insulin absorbs nutrients

such as glucose and lipids, and stores them for later use in the

form of glycogen and triacylglycerol (TAG). When insulin produc-

tion from pancreatic beta cells is disrupted in mammals, as in the

case of Type I diabetes, the body is unable to utilize the nutrients

consumed and instead mounts a starvation response whereby
stored lipids and glycogen are broken down to generate energy

(Kahn et al., 2005). The production of insulin by pancreatic beta

cells is tightly regulated to ensure that appropriate amounts are

released into the blood depending on nutrient status and food

intake.

The insulin pathway is highly conserved from mammals to

Drosophila and serves fundamentally the same physiological

functions (Taguchi and White, 2008; Wu and Brown, 2006). A

main difference, however, is that the fly insulin-producing cells

(IPCs), which are homologous to pancreatic beta cells, are found

in the brain (Rulifson et al., 2002). These IPCs lie in the brain

median neurosecretory cluster (mNSC) and produce at least

three of the eight known Drosophila insulin-like peptides (Dilp2,

Dilp3, and Dilp5) (Brogiolo et al., 2001; Ikeya et al., 2002). A defi-

ciency that uncovers multiple Dilps (Dilp1–Dilp5) results in flies

that, in addition to being smaller, have decreased TAG and in-

creased circulating sugars (Kulkarni et al., 1997). Dilps secreted

from the IPCs bind to the insulin receptor in peripheral tissues to

promote growth and nutrient utilization.

The fat body (FB) functions as a key sensor of the nutritional

status of the fly and couples systemic growth, metabolism,

and stem cell maintenance with nutritional availability. Studies

using ex vivo organ cocultures of FBs and larval brains proposed

that the FB secretes growth-promoting factors (Britton and

Edgar, 1998; Davis and Shearn, 1977). Suppression of amino

acid (AA) transport in the FB by knocking down the AA trans-

porter slimfast (slif) resulted in flies with systemic growth defects,

suggesting that the FB acts as a nutrient sensor that nonauton-

omously modulates insulin signaling based on nutrient status

(Colombani et al., 2003; Géminard et al., 2009). When flies

were cultured on rich food, the amount of Dilp accumulation

was considerably lower in the IPCs compared with the level of

Dilps in IPCs of nutrient-deprived flies. Consistent with this, the

level of Dilps in the hemolymph of fed flies was higher than in

starved flies (Géminard et al., 2009). Altogether, these results

suggest that the regulation of organismal growth in response

to nutrient availability involves the control of insulin secretion

from brain IPCs by factors originating from the FB.

Here, we identify Unpaired 2 (Upd2), a Drosophila cytokine, as

a secreted factor produced by the FB in response to dietary

fat and sugars. Upd2 activates Janus kinase (JAK)/Signal

Transducer and Activator of Transcription (STAT) signaling in
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Figure 1. Upd2 Controls Systemic Growth and Metabolism
(A) Adult flies with FB-specific knockdown of upd1, upd2, and upd3 using the ppl-GAL4 driver (ppl-GAL4 > upd-RNAi, subpanel a). RNAi of upd2 (upd2-RNAi,

indicated as upd2-i in the figure) using two independent lines (lines 1 and 2) results in size reduction of both adult males (subpanel a) and females (subpanel b).

Note that in the subsequent figures, because upd2(1)-i and upd2(2)-i gave the same results, we used the upd2(1)-i line and simply refer to it as upd2-i. cg-GAL4 >

upd2-RNAi third instar larvae are smaller and slimmer than control (subpanel c). Control-i is Luciferase-RNAi.

(B) Hemizygous adult males for the upd2 deletion allele (upd2D) appear smaller and slimmer than the y w controls.

(C) Quantification of the wing area (subpanel a), cell size (subpanel b), and cell density (subpanel c) of upd2D males compared with y w control.
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GABAergic neurons, relieving their inhibitory effect on the IPCs

and in turn resulting in the secretion of Dilps into the hemolymph

to promote systemic growth and fat storage. The similarities

between Upd2 and vertebrate Leptin are striking because Leptin

is secreted from the adipose tissue in mammals under condi-

tions of nutritional surplus, and high fat levels in particular (Zhang

et al., 1994). We show that human Leptin can functionally substi-

tute forDrosophilaUpd2 and can function as a ligand to the JAK/

STAT receptor Dome Drosophila. Altogether, our studies illus-

trate how a cytokine-mediated pathway regulates the secretion

of insulin to modulate systemic growth according to nutrient

availability, in particular dietary fats, and provides evidence for

the evolutionary conservation of this signaling module.

RESULTS

Upd2 Plays an FB-Specific Role to Control Systemic
Growth
Cytokines are secreted molecules that communicate intercel-

lular signals and thus are ideal candidates for remotely signaling

nutritional status (Dinarello and Mier, 1986) and signal through

the JAK/STAT pathway. In the Drosophila genome, three related

Upd ligands—Upd1, Upd, and Upd3—have predicted second-

ary structures similar to that of type I cytokines (Boulay et al.,

2003) and regulate the activity of the JAK/STAT pathway (Wright

et al., 2011; Zeidler et al., 2000). They bind to the transmem-

brane receptor Domeless (Dome) (Brown et al., 2001), which in

turn activates the JAK Hopscotch (Hop) (Binari and Perrimon,

1994). Activated Hop regulates STAT92E/Marelle (Hou et al.,

1996). Because cytokines play central roles in mammalian nutri-

tion sensing and metabolic homeostasis, we reasoned that their

fly counterparts could be involved in similar processes.

To investigate the role of the Upd cytokines in the FB, and their

effects on overall body size, we used RNA interference (RNAi) to

knock down their expression. At least two independent RNAi

lines per gene and two different FB GAL4 drivers (ppl-GAL4;

and cg-GAL4) were used to ensure that the knockdown was

both gene and tissue specific. The efficiency of knockdown of

all three genes in the larval FB was comparable (upd1, 80%;

upd2, 60%; and upd3, 70%) as analyzed by quantitative PCR

(qPCR). Of interest, only FB-specific knockdown of upd2, and

not upd1 or upd3, resulted in smaller flies (Figures 1Aa and

1Ab) and larvae (Figure 1Ac), suggesting that this ligand alone

plays an FB-specific role in regulating systemic growth. In further

support of the model that the effect of Upd2 on systemic growth

is specific to the FB, knockdown of upd2 specifically in larval

muscles did not affect body size (Figures S1A and S1B available

online).
(D) Rescue of the wing area phenotype of upd2D males by FB-specific expressi

(E) Quantification of TAG to protein in male larvae with FB-specific knockdown o

(F) Ratio of TAG to protein in adult females with FB-specific knockdown of JAK/

(G) Circulating sugars in the hemolymph of female adults with FB-specific knock

(H) Ratio of glucose to protein in the hemolymph of upd2D adult males compare

(I) Ratio of TAG to protein in adult upd2D males compared with y w controls.

(J) Rescue of the TAG phenotype in upd2D adult males with FB-specific expressi

represent the standard deviation (SD); p values were calculated using Welch’s t

See also Figure S1.
Previously, an upd2 homozygous deletionmutant (upd2D) that

removes the 50UTR and the first 89 AAs was identified and re-

ported to be viable and fertile (Hombrı́a et al., 2005). An examina-

tion of the growth phenotypes of upd2D flies, compared with an

age- and population-density-matched control, showed that the

upd2D flies were significantly slimmer and smaller (Figure 1B),

similar to the phenotype generated with FB-specific knockdown

of upd2D (Figure 1Ab). An examination of the wings, a tissue that

can be easily quantified for growth phenotypes, revealed that

upd2 mutant wings have a 10% reduction in overall size (Fig-

ure 1Ca) and a significant reduction in both cell number (Fig-

ure 1Cb) and cell size (Figure 1Cc). Expression of an upd2

cDNA in the FB of upd2D flies was able to rescue the wing

size phenotype (Figure 1D), providing further evidence that

upd2 plays an FB-specific role in the regulation of systemic

growth.

Upd2 Plays an FB-Specific Role to Control Metabolism
To test whether Upd2 plays a role in regulating energy metabo-

lism, we measured the levels of triacylglycerol (TAG) in larvae

with FB-specific knockdown of upd2. TAG levels were signifi-

cantly reduced (Figure 1E). Similarly, upd2D larvae also showed

a significant reduction in TAG levels (data not shown). Knock-

down of upd2 specifically in other tissues, such as larval

muscles, did not affect stored fat levels or body size (Figure S1),

consistent with the model that the function of Upd2 is specific to

the FB.

In Drosophila, organismal growth is restricted to larval stages,

and genetic manipulations that affect nutrient sensing during

adulthood lead to metabolic phenotypes. To assay whether

Upd2 plays a specific role in nutrient sensing in adults, we used

a GAL4 driver that is expressed only in the adult FB (yolk-

GAL4; see Experimental Procedures) and measured TAG levels

in flies 15 days after eclosion. FB-specific knockdown of upd2

(Figure 1G) was associated with an increase in the amount of

circulating sugar in the hemolymph, suggesting that Upd2 plays

a role in the FB to regulate overall energy metabolism. Consis-

tently, upd2D adults displayed an increase in the levels of circu-

lating sugars (Figure 1H), and a significant reduction in TAG levels

(Figure 1I) that could be rescued by expressing an upd2-cDNA

in the FB (Figure 1J). Of interest, knockdown of stat92E, the

transcription factor that mediates JAK/STAT pathway activity,

in the FB (efficiency of knockdown in the FB as assayed by

qPCR > 90%) did not affect TAG storage (Figure 1F), indicating

that Upd2 plays a nonautonomous role in regulating fat storage.

Altogether, these results indicate that Upd2 in the FB regu-

lates systemic growth in larvae and energy metabolism in both

larvae and adults. Further, the effect of Upd2 is likely FB
on of upd2 cDNA using cg-GAL4.

f upd2 using cg-GAL4.

STAT pathway components using yolk-GAL4.

down of upd2. In (E)–(G) the control is white-RNAi.

d with y w controls.

on of either 10D4 or 10D5 upd2 cDNA using cg-GAL4. Error bars in the figures

test (*p < 0.05, **p << 0.01, ***p << 0.00001).
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nonautonomous, as removal of stat92E from the FB is not asso-

ciated with an effect on systemic growth.

Upd2 Signals the Fed State and Senses Fat and Sugars
To explore the relationship between Upd2 expression in the FB

and the nutritional state, we examined upd2 transcript levels

under starvation. Strikingly, we found that upd2 transcripts

showed a 98% reduction (Figure 2A) in adult wild-type males

that were starved on 1% sucrose agar for >72 hr. Because

a reduction in size and energy metabolism could result from

reduced nutritional intake, we measured fly feeding using both

blue dye (Xu et al., 2008) and capillary feeder (CAFÉ) assays

(Ja et al., 2007). Both tests, performed in three to five repli-

cates on age- and population-density-matched adult male flies,

showed that neither the FB-specific knockdown of upd2 nor the

upd2D flies had feeding-behavior defects (Figures 2B and 2C).

To assess whether upd2 senses the nutritional state of the

organism, we analyzed lipid storage in hepatocyte-like cells/

oenocytes that accumulate lipid droplets only under conditions

of nutritional deprivation and not under a fed state (Gutierrez

et al., 2007). Whereas the control larvae did not accumulate lipid

droplets under fed conditions (Figure 2D), upd2D larvae showed

a striking accumulation of lipid droplets in oenocytes, as assayed

by Oil Red O staining, even under conditions of nutritional sur-

plus (Figure 2D). Because upd2D flies feed normally, this lipid

accumulation suggests that Upd2 is required to sense the appro-

priate nutritional state.

Given that knocking down the AA transporter slif mimics the

starvation state (Colombani et al., 2003; Gutierrez et al., 2007),

we examined the upd2 steady-state mRNA levels in FB-specific

slif knockdown (ppl-GAL4 > UAS-slif anti) by qPCR. Strikingly, the

upd2 level increased by >2-fold, whereas another JAK/STAT

ligand, upd1, and the downstream component STAT92E were

not significantly altered (Figure 2E). Slif plays a role in transport-

ing AAs, and its absence results in a protein-deprived state.

Hence, the upregulation of upd2 under this state (Figure 2E)

suggests that the upstream signal for upd2 expression is not

nutrition-derived proteins.

We next assayed upd2 expression in adult male flies subjected

to diets rich in protein, fat, or sugar, and compared upd2 mRNA

levels under these conditions with respect to standard lab food.

In many independent experiments, we consistently found that

5 days after exposure to high-fat and high-sugar diets, the

normalized steady-state level of upd2 mRNAs went up by 4- to

6-fold, a statistically significant difference compared with levels

obtained on standard lab food (Figure 2F). Taken together, these

results strongly argue that upd2 senses the fed state down-

stream of fats and sugars.

To address whether Upd2 is sufficient to signal the fed state,

we tested whether overexpression of upd2 in wild-type flies

can suppress the starvation response associated with nutrient

deprivation.Wemeasured the breakdown of stored fat in starved

flies overexpressing upd2 in the FB using thin-layer chromatog-

raphy (TLC). TLC was performed on adult flies to measure the fat

stores after a period of 24 hr on 1% agar. Whereas in control flies

the stored fat levels were nearly depleted after 24 hr (Figure 2G;

98% reduction), the reduction was not significant in flies overex-

pressing upd2 in their FB (Figure 2G; 35% reduction). Thus,
126 Cell 151, 123–137, September 28, 2012 ª2012 Elsevier Inc.
Upd2 can suppress stored fat breakdown under conditions of

starvation, indicating that it signals a fed condition even when

flies are deprived of nutrients.

Brain IPCs secrete Dilps in response to nutrition and accumu-

late Dilps under conditions of nutrient deprivation (Géminard

et al., 2009). To test whether Upd2 overexpression in the FB

can suppress accumulation of Dilps in the IPCs under conditions

of starvation, age- and population-density-matched adult flies

overexpressing Upd2 in the FB were starved for 24 hr on 1%

agar. We then dissected and stained the brains for Dilp2 and

Dilp5, analyzed them by confocal microscopy, and calculated

the mean Dilp fluorescence. Strikingly, Dilp2 and Dilp5 accumu-

lation was significantly lower in brains of starved flies overex-

pressing Upd2 in their FB (Figure 2H, 78% less Dilp2; data not

shown for Dilp5), revealing that Upd2 expression in the FB alters

Dilp2 and Dilp5 accumulation in brain IPCs in response to the

nutritional state. Note that in the experiments described below,

the same results were observed for both Dilp2 and Dilp5. For

simplicity, only the Dilp2 data are shown, and in the text Dilp2

and Dilp5 are referred to as Dilp(s).

The upd2Dmutants and FB knockdown of upd2 resemble the

dilp1–dilp5 deletion flies with respect to their size and metabolic

phenotypes. Hence, we tested whether the primary role of Upd2

is to signal the fed state to the IPCs. Two different FB-specific

drivers, cg-GAL4 (Figure 3A) and ppl-GAL4 (data not shown),

were used for these experiments. RNAi against upd2 in the FB

resulted in a statistically significant increase inmeanDilp fluores-

cence in larval brains (Figure 3A). This increase in Dilp accumu-

lation was most apparent when the larvae were actively feeding.

We performed a qPCR analysis of Dilp in the brains of larvae

with FB-specific knockdown of upd2 RNAi to ensure that the

increase in mean Dilp fluorescence was not a result of increased

transcription. No significant change in Dilp transcription was

observed (Figure S2). In addition, FB-specific knockdown of

either stat92E or upd1 did not result in increased accumulation

of Dilp (Figure 3A), which is consistent with our observations

regarding body size and metabolism (Figure 1). Further, the

increase in Dilp accumulation in the IPCs was also observed in

both larval (data not shown) and adult upd2D homozygous

mutant brains (Figure 3B). Finally, the accumulation of Dilp in

the IPCs of upd2D homozygous mutants could be rescued by

expressing upd2 cDNA in the FB (Figure 3Bc), indicating that

the inability to release Dilps underlies both the systemic growth

and energy metabolism phenotypes of upd2D mutants.

IPCs in the Drosophila brain use membrane voltage-depen-

dent neurosecretory mechanisms to facilitate Dilp release in

response to nutrition (Géminard et al., 2009). Thus, if Upd2

promotes Dilp secretion under fed conditions, activating Dilp

secretion in upd2D homozygous mutants should rescue the

upd2D growth phenotype. To achieve this, we depolarized the

IPCs by expressing the bacterial sodium channel (NaChBac)

(Luan et al., 2006; Ren et al., 2001) under the control of the

Dilp3-GAL4 driver, which drives expression specifically in

the brain IPCs during both larval and adult stages. Under

these conditions, the level of Dilp accumulation in the IPCs of

upd2D was significantly reduced (Figure 3C). In addition, this

artificial depolarization of the IPCs in an upd2D homozygous

mutant background rescued the small size of upd2D mutants



Figure 2. Upd2 Expression in the FB Signals the Fed State

(A) The steady-state mRNA expression of STAT92E and upd2 was analyzed by qPCR.

(B) Blue dye feeding assay in adult males with FB-specific knockdown of upd2.

(C) CAFÉ assay in adult males with FB-specific knockdown of upd2 or upd2D.

(D) Oil Red O staining of oenocytes in third instar male larvae shows that upd2D animals accumulate more Oil Red O droplets under fed conditions compared

with y w controls.

(E) Steady-state mRNA levels in adult males with FB-specific knockdown of slif compared with control (UAS-slif anti).

(F) qPCR performed on RNA extracted 5 days after adult males were exposed to different diets. The normalized expression level of upd2 is shown.

(G) TLC was used to assay the amount of stored TAG in adult male flies under fed and starved conditions. TAGwas extracted from ppl-GAL4 > 10D4 upd2-cDNA

or GFP (control) adult males. S indicates the mobility of coconut oil used as a marker in the TLC plate.

(H) Dilp2 immunostaining in the IPCs of starved adult male flies expressingGFP (control) or 10D4 upd2-cDNA using ppl-GAL4. Black error bars represent the SD.

Blue error bars represent the standard error of the mean; p values were calculated using Welch’s t test (*p < 0.05, **p << 0.01, ***p << 0.00001).
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Figure 3. Upd2 Remotely Controls Dilp Accumulation in IPCs

(A)Maximum intensity XY projection (MIP) of cg-GAL4male larval brains stainedwith Dilp2 driving the expression of eitherwhite-RNAi (control) or upd2-RNAi, and

quantification of the mean Dilp2 immunofluorescence in larval brains of cg-GAL4 animals driving RNAi of JAK/STAT pathway components.

(B) MIP of adult male brains stained with Dilp2. The brains were dissected from age-matched upd2D and y w control (subpanel a). A significant increase in Dilp2

fluorescence is observed in upd2D male brains compared with y w (subpanel b). In subpanel c, rescue of Dilp2 accumulation in upd2D flies by FB-specific

expression of the 10D4 upd2 cDNA using cg-GAL4. Brains from cg-Gal4 flies were used as positive controls (gray bar).

128 Cell 151, 123–137, September 28, 2012 ª2012 Elsevier Inc.



(Figure 3D). Of interest, hyperpolarizing the neurons by express-

ing the potassium channel rectifier EKO (White et al., 2001)

did not exacerbate the upd2D size phenotype (Figure 3D), indi-

cating that in the absence of upd2, the IPC neurons are already

depolarized.

In summary, the reduction in TAG levels, increase in circulating

sugars, and systemic reduction in body size in the absence of

upd2 resemble a reduction in insulin signaling, suggesting that

the primary role of Upd2 is to remotely control the secretion of

Dilps from the IPCs in response to nutrient intake.

A STAT Reporter Is Expressed near the IPCs and Is
Altered in Response to Starvation
To elucidate how Upd2 regulates Dilp secretion in response to

nutrition, we examined the activity of a STAT reporter (10XSTAT::

GFP; see Experimental Procedures) that was previously shown

to recapitulate JAK/STAT pathway activation (Bach et al., 2007)

in the adult brain. We found that STAT::GFP is widely expressed

throughout the adult brain in both neurons and glia (Figure S3),

and more specifically, it is expressed in the olfactory lobe (Fig-

ure 4A, asterisk), the optic lobe (Figure 4A, hash), and themNSCs

(a region that includes the IPCs plus other neurons; see arrow in

Figure 4A) of the adult brain. Of importance, an analysis of single

optical sections revealed that the STAT reporter is expressed in

neurons juxtaposed to the IPCs (arrow, Figure 4B) in the mNSC

region of the adult brain and in the larval brain (Figure S4).

Next, we addressed whether the expression of the STAT

reporter is altered in response to nutritional deprivation. Under

fed conditions, the STAT reporter is expressed in the cell body

of neurons immediately adjacent to the Dilp-expressing IPCs

(Figure 4C, red arrow). In addition, the STAT reporter is ex-

pressed along the neurites that run parallel to the median arbor-

izations of the IPCs (Figure 4C, yellow arrow). Along the neurites,

the reporter is enriched in vesicular structures that colocalize

with the presynaptic marker Synapsin (Klagges et al., 1996; Fig-

ure S5), suggesting that they may correspond to the sites of

synaptic contact with the IPCs. Following nutrient deprivation

(adult males kept on 1% sucrose agar at 25�C for >72 hr),

STAT reporter expression in neurons juxtaposed with the IPCs

is altered, and both the expression in the cell body (Figure 4D,

red arrow) and the vesicular enrichment along the median

branches of the IPCs is reduced or lost (Figure 4D, yellow arrow).

Altogether, the alterations in reporter activity in these neurons in

response to the nutrient status suggest that they influence Dilp

secretion in the fed condition.

If Upd2 controls Dilp levels in the IPCs by activating STAT

signaling in the mNSC neurons, then compromising upd2 func-

tion should phenocopy the effect of starvation on STAT reporter

expression. We analyzed STAT reporter expression in the adult

brains of flies that express upd2-RNAi in the FB and compared

it with a luciferase-RNAi control. Indeed, although the expression

of the STAT reporter in the controls was very similar to that

observed in the fed condition (Figure 4E), both the expression
(C) Expression of NaChBac in the IPCs of upd2D adult male brains using Dilp3-G

(D) Expression ofNaChBac in the IPCs of upd2D adult male brains using Dilp3-GA

neuronal activity using the inward rectifying potassium channel (EKO222) does n

Error bars represent the SD; p values were obtained with Welch’s t test (*p < 0.0
of the reporter in the cell body (red arrow, Figure 4F) and the

vesicular enrichment along the IPCs (Figure 4F, yellow arrow)

were much reduced or lost when upd2 was knocked down in

the FB, as observed under starvation.

STAT Signaling in mNSC Neurons Regulates Systemic
Growth and Metabolism
To further test the model that JAK/STAT signaling plays a role in

the mNSCs to regulate systemic growth and metabolism, we

assayed whether knocking down STAT92E in mNSC neurons

would affect systemic growth and fat storage. To knock down

STAT92E, we used dome-GAL4 (Mandal et al., 2007), which

we found drives expression in a number of neurons in the adult

brain, including STAT-reporter-positivemNSCs (Figure 5A, white

arrow). At 25�C, dome-GAL4 > stat92E-RNAi results in lethality,

presumably because of the role of STAT92E in development.

However, when cultured at 18�C, the flies emerged but were

significantly smaller than the controls (Figure 5B). We shifted

dome-GAL4 > stat92E-RNAi adults to 29�C for 7 days to allow

for a more significant knockdown of STAT92E expression, and

assayed for stored fat by performing a TLC assay. Strikingly,

the level of stored fat was significantly lower in flies with compro-

mised STAT92E function (Figure 5C). A similar experiment per-

formed with upd2-RNAi flies failed to reveal a role for Upd2 in

the dome-GAL4 neurons, as there was no effect on stored fat

(Figure 5C) or body size (data not shown).

To examine whether compromising the function of the re-

ceiving end of the JAK/STAT pathway results in increased Dilp

accumulation in the IPCs, we used dome-GAL4; tub-GAL80ts

to express stat92E-RNAi or dome-RNAi only during adulthood

(see Experimental Procedures). We assayed the expression of

Dilp2 in the IPCs of these flies 7 days after transfer at the restric-

tive temperature and compared it with aGFP-RNAi control. Dilp2

accumulation significantly increased when stat92E or dome

function was compromised in adults (Figure 5D), suggesting

that the JAK/STAT pathway plays a role in promoting Dilp2

secretion from the IPCs.

The dome-GAL4 driver is expressed not only in the brain but

also in other tissues of the fly (e.g., gut and muscle). Hence, to

address whether JAK/STAT signaling in the mNSC neurons acti-

vates/depolarizes or inhibits/hyperpolarizes neuronal activity,

we expressed the bacterial sodium channel (NaChBac) using

dome-GAL4 at the restrictive temperature (dome-GAL4; tub-

GAL80ts > NaChBac). This forced depolarization resulted in

reduced fat storage (Figure 5E) and increased Dilp2 accumula-

tion (Figure 5F), suggesting that activation of the JAK/STAT

pathway in mNSC neurons prevents their neuronal firing.

JAK/STAT Plays a Role in Neurons Expressing Vesicular
GABA Transporter to Modulate Systemic Growth and
Metabolism
IPCs express receptors for serotonin and GABA, and both of

these neurotransmitters exert an inhibitory effect to prevent
AL4 significantly reduces Dilp2 accumulation in the IPCs.

L4 significantly increases the wing area of upd2D. Note that further inhibition of

ot reduce the wing area any more than removal of upd2 alone.

5, **p << 0.01, ***p << 0.00001). ns, not significant. See also Figure S2.

Cell 151, 123–137, September 28, 2012 ª2012 Elsevier Inc. 129



Figure 4. STAT Reporter Expression in the Adult Brain and its Response to Starvation
(A) Anterior (subpanel a) and posterior (subpanel b) MIPs of adult male brains expressing the 10XSTAT::GFP reporter. nc82 (magenta), a presynaptic active-zone

protein marker, identifies the neuropils. STAT::GFP (green) is widely expressed, including in the olfactory lobe (asterisk), optic lobe (hash), and mNSCs (arrow).

(B) Single optical section along the XY axis of an adult male brain immunostained for Dilp2 (magenta) and STAT::GFP (green). Note that the cell bodies of the STAT

reporter-expressing neurons are located right next to the Dilp2-expressing IPCs (arrow points to the juxtaposition of these neurons).

(C–F) Three-dimensional projections along the XY axis of adult male brains stained for Dilp2 (magenta) and STAT::GFP (green).

(C) Under fed conditions, the STAT::GFP reporter is expressed in neurons immediately adjacent to the Dilp2-expressing IPCs (red arrow). The STAT reporter is

expressed along the neurites that run parallel to the median arborizations of the IPCs (yellow arrow).

(D) Under starved conditions, the GFP reporter expression is reduced in the cell body (red arrow) and along the neurites (yellow arrow). Dilp2 fluorescence in the

IPCs is increased under starved conditions (D) compared with fed conditions (C).
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Figure 5. STAT Signaling in mNSC Neu-

rons Regulates Systemic Growth and

Metabolism

(A) MIP of adult female brain expressing enhanced

YFP (eYFP) under the control of dome-GAL4.

dome-GAL4 is widely expressed and its expres-

sion domain includes a cluster of neurons in the

mNSC region (white arrow).

(B) Expression of STAT92E-RNAi in the dome-

GAL4 expression domain results in small, slim

flies.

(C) The amount of TAG measured by TLC is

significantly reduced in adult females expressing

STAT92E-RNAi with dome-GAL4 but not with

upd2-RNAi.

(D) Dilp2 fluorescence is significantly increased in

both STAT92E-RNAi and dome-RNAi in the IPCs

of adult females using dome-Gal4. The control in

(B)–(D) is GFP-RNAi.

(E) The amount of TAG is significantly reduced in

adult females expressing NaChBac with dome-

Gal4.

(F) The expression of NaChBac in dome-Gal4

neurons significantly increases Dilp2 accumula-

tion in the IPCs of adult females. The control in (E)

and (F) isGFP overexpression. Note that in (D)–(F),

Gal80ts was used to allow transgene expression

only in adults.

Error bars represent the SD; p values were

calculated using Welch’s t test (*p < 0.05, **p <<

0.01, ***p << 0.00001).
Dilp release (Enell et al., 2010; Luo et al., 2012). Thus, we exam-

ined whether the cells in the mNSCs that express the STAT

reporter could exert their effects through those neurotransmitter

systems. However, although neurons that express the STAT

reporter do not express the GABA receptor (Figure 6A), a subset

of them expressed the Drosophila vesicular GABA transporter

(dVGAT; Figure 6B, yellow arrows) that is required for GABA

release (Fei et al., 2010). We found that reducing the activity of

dome and STAT in dVGAT neurons affected systemic growth

at 25�C (Figure 6C). Next, we assayed the level of stored fat in

dVGAT-GAL4 > dome-RNAi adult flies at 29�C (because high

levels of lethality were observed for dVGAT-GAL4 > STAT-
(E and F) upd2-RNAi in the FB alters STAT::GFP reporter expression in the brain (F) compared with Luci

enrichment of the STAT::GFP reporter along the neurites, juxtaposed with the IPCs, is lost in flies expressing

with F). STAT::GFP expression in the cell body is reduced in flies expressing FB-specific upd2-RNAi (com

increased in the IPCs of adult males expressing FB-specific upd2-RNAi compared with control (compare E

See also Figures S3, S4, and S5.

Cell 151, 123–137, Se
RNAi at this temperature, we analyzed

dome flies in the TAG and Dilp assays).

The knockdown of dome in dVGAT

neurons resulted in a significant decrease

in stored fat (Figure 6D) and an increase in

Dilp2 accumulation in the IPCs (Fig-

ure 6E), indicating that JAK/STAT

signaling in GABAergic neurons relieves

their inhibitory effect on IPCs. Consistent

with our relay model, loss of JAK/STAT
components in the Dilp neurons themselves did not affect

systemic growth (data not shown) or metabolism (as assayed

by stored fat; Figure S6).

Human Leptin Can Functionally Substitute for Upd2 by
Signaling via the JAK/STAT Receptor Dome
Upd2 encodes a type I cytokine that presents structural features

similar to those of Leptin (Boulay et al., 2003). Because our

finding that Upd2 influences insulin secretion by impinging on

STAT signaling in GABAergic neurons in order to disinhibit Dilp

neurons is reminiscent of a recent finding that Leptin activates

STAT signaling in GABAergic neurons and in turn results in the
ferase-RNAi control (E). Note that the bouton-like

FB-specific upd2-RNAi (compare yellow arrow in E

pare red arrow in E with F). Dilp2 fluorescence is

with F).
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Figure 6. Role of the JAK/STAT Pathway in GABAergic Neurons Affects Systemic Growth andMetabolism by InfluencingDilp2 Accumulation

in the IPCs

(A) XY slice of the mNSC region of 10XSTAT::GFPmale adult brains expressing dsRed2 under the control ofGABA-B-R2-GAL4. Immunostaining for Dilp2 (blue),

GFP (green, STAT::GFP expression), and dsred2 (red,GABA-B-R2 expression domain) shows that Dilp2 IPCs are positive for the GABA receptor, and that STAT

reporter neurons do not overlap with the GABA-B-R2-GAL4 expression domain.

(B) XY slice of the mNSC region of 10XSTAT::GFP male adult brains expressing the membrane-associated dendritic marker DenMark under the control of the

dVGAT-GAL4 driver. Immunostaining for Dilp2 (blue), GFP (green, STAT::GFP expression), and DenMark (red, dVGAT expression domain) shows that STAT

reporter neurons are positive for the vesicular GABA transporter dVGAT (yellow arrow).

132 Cell 151, 123–137, September 28, 2012 ª2012 Elsevier Inc.



derepression of a neuronal group called proopiomelanocortin

(POMC) neurons, allowing them to fire (Vong et al., 2011), we

tested the possibility that Leptin can substitute for Upd2. We

generated transgenic flies that expressed human Leptin under

the control of the UAS promoter (see Experimental Procedures)

and expressed this transgene in the FB of upd2D flies. Strikingly,

in similarity to flies expressing upd2 cDNA in the FB, human Lep-

tin cDNA was able to rescue the growth (Figure 7A), fat storage

(Figure 7B), and Dilp2 accumulation phenotypes (Figure 7C) of

upd2D flies. In addition, as documented in previous studies in

mice (Caton et al., 2011; Ni et al., 2008; Rodgers and Shearn,

1977), injecting a physiologically relevant dose of recombinant

human Leptin (see Experimental Procedures) into upd2D flies

significantly reduced the accumulation of Dilp2 in upd2D brains

(Figure 7D) and solved the primary defect underlying a loss of

Upd2 function. These results suggest that exogenous Leptin

signals through the same pathway as Upd2.

To test whether human Leptin is a bona fide ligand of the JAK/

STAT pathway receptor Dome, we used a well-established JAK/

STAT reporter assay (10XSTATLuc) in Drosophila Kc cells (Baeg

et al., 2005; Hombrı́a et al., 2005; Wright et al., 2011). Drosophila

Kc cells were transfected with 10XSTATLuc and Actin-promoter

driving Renilla luciferase (Act-Renilla) together with dsRNAs

against dome or control (GFP) or without dsRNA treatment.

The cells were then incubated with 4 nM recombinant human

Leptin, a concentration at which Upd ligands effectively

activate the 10XSTATLuc reporter in cell culture (Wright et al.,

2011). We measured the ratio of firefly to Renilla luciferase ac-

tivities (in relative luciferase units [RLUs]) at different time points

after incubation with human Leptin, and compared it with the

RLU of cells stimulated with media lacking Leptin. A significant

increase in RLU in cells stimulated with Leptin over time was

observed with control dsRNA or in cells not treated with dsRNAs

(Figure 7E). However, cells treated with dsRNA against dome

(two independent dome dsRNAs were used) were unable to

respond to Leptin (Figure 7E). By plotting the luciferase signal

as a function of the amount of human Leptin added, we found

that the binding affinity (Km-Michaelis constant) of human Leptin

for Dome is 2.37 nM (Figure S7A), which is comparable to the Km

of 1 nM reported for the human Leptin receptor (DasGupta et al.,

2005). These results provide strong evidence that human Leptin

is able to signal through the JAK/STAT pathway in Drosophila

cells by engaging the JAK/STAT receptor Dome.
DISCUSSION

Previous investigators have postulated the existence of secreted

factors produced by the FB that stimulate systemic growth by

stimulating cell proliferation, and proposed that the FB (the fly

nutrient sensor) couples Dilp secretion from brain IPCs depend-

ing on the nutritional status (Britton and Edgar, 1998; Colombani

et al., 2003; Davis and Shearn, 1977; Géminard et al., 2009).
(C) Knockdown of dome and STAT in dVGAT neurons results in small, slim flies,

(D) The amount of TAG measured by TLC in adult males is significantly reduced

(E) Dilp2 fluorescence in IPCs is significantly increased when dome expression i

In (C)–(E) the control is GFP-RNAi. Error bars represent the SD; p values were ca
Here, we show that the JAK/STAT ligand Upd2, a type 1 cytokine

signal, is involved in the interorgan communication between the

FB and the brain IPCs. We demonstrate that human Leptin can

rescue the upd2mutant phenotypes, which implies that an inver-

tebrate model system can be used to address questions pertain-

ing to Leptin biology.

Upd2 Plays an FB-Specific Role in Communicating the
Fed State to the Brain IPCs
Upd proteins have secondary structures that are predicted to

have a helices similar to that of type I cytokines belonging to

the IL-6 family, and sequence alignments suggest that they

show some similarity to vertebrate Leptins (Boulay et al., 2003;

Harrison et al., 1998). Among the three Upd ligands that activate

the Dome receptor, only Upd2 plays a significant role in commu-

nicating the nutritional status from the FB. This is somewhat

surprising, because all three Upd proteins are secreted JAK/

STAT pathway agonists and are able to activate the JAK/STAT

pathway nonautonomously in vivo. However, the signal

sequences of the different Upds appear to confer different

biophysical properties upon them, as illustrated by tissue-culture

assays showing that although Upd1 and Upd3 associate

primarily with the extracellular matrix, Upd2 is easily detectable

in the media (Wright et al., 2011). In addition, secretion assays

showed that Upd2 is able to condition tissue-culture media

more potently than either Upd1 or Upd3. Altogether, these

results suggest that Upd2 activates JAK/STAT signaling at

greater distances than Upd1 or Upd3.

As evidenced by the growth and metabolic phenotypes of

FB-specific knockdown, Upd2 seems to be required only in

the FB; however, the reason for this tissue specificity is

unclear. In a previous study, Hombrı́a et al. (2005) analyzed the

Upd2 protein using a hidden Markov model, and suggested

that Upd2 is probably not secreted via the classical Golgi-ER

machinery because it lacks a signal peptide. In fact, other type

I cytokines involved in interorgan crosstalk also lack the signal

peptide and are secreted by unconventional secretory pathways

(Haas et al., 2011). Thus, a possible explanation for the tissue

specificity of Upd2 is that the FB is the only tissue that can

secrete this protein in an active form. Future work, contingent

on the development of techniques and reagents to detect

Upd2 in the fly hemolymph, will clarify this issue.

Existence of Nutrient-Specific FB-Derived Signals
The identification of Upd2 as a nutrient-regulated signal from the

FB that does not depend on AAs but is produced in response to

dietary fats and sugars reveals that different nutrient-specific

secreted factors exist in the fly. Of interest, the upregulation of

upd2 levels in FB knockdown of slif suggests the existence of

a homeostatic feedback loop whereby Upd2, in the context

of low protein, promotes the utilization of fat and carbohydrate

energy sources. High-sugar diets in flies have been shown to
as quantified by the reduction in wing area.

when dome-RNAi is expressed with dVGAT-GAL4.

s compromised in the GABAergic neurons of adult males.

lculated using Welch’s t test (*p < 0.05, ***p << 0.00001). See also Figure S6.
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Figure 7. Human Leptin Can Rescue the Upd2D and Signals through Domeless

(A) Quantification of wing area in upd2D males with FB-specific expression of upd2 cDNA (10D4) and human Leptin cDNA.

(B) The amount of TAG measured by TLC is significantly increased in adult males expressing human Leptin cDNA in the FB.

(C) Quantification of Dilp2 accumulation in FB-specific expression of the 10D4 upd2 cDNA and human Leptin cDNA in upd2D background. Brains from cg-Gal4

flies were used as positive controls (gray bar).

(D) MIP of upd2D adult male brains stained with Dilp2 after injection of human Leptin or control (PBS). The difference in Dilp2 fluorescence is quantified.

(E) Response of the 10XSTATLuc reporter in Kc cells upon incubation with 4 nM human Leptin. The ratio of Renilla to firefly luciferase activity is measured at

regular intervals from 24–72 hr and quantified as a percent fold change in relative units with respect to cells incubated with media alone in the presence of no

dsRNA, control, or dome dsRNA.

Error bars represent the SD; p values were calculated using the t test (*p < 0.05, **p << 0.01, ***p < 0.001, ****p < 0.00001). See also Figure S7.
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trigger a lipogenesis program akin to high-fat diets in mammals

(Musselman et al., 2011; Zhou et al., 2005), suggesting that

Upd2 is most likely downstream of signals that are produced

by increased fat stores. This is a highly significant finding

because it brings into question the broadly prevailing view that

one dominant secreted factor downstream of AAs governs

nearly all aspects of systemic growth and metabolism in flies.

Our findings support a model in which the fly FB secretes

numerous factors that regulate systemic growth andmetabolism

downstream of various components of the fly diet.

JAK/STAT Activation in GABAergic Neurons and
Parallels the Adipose-Hypothalamic Circuit in Mammals
Our results indicate that STAT activation in GABAergic neurons

inhibits their firing. Previous work implied that the GABA-B-

receptors in Dilp neurons inhibit Dilp release (Enell et al., 2010).

Given that these GABAergic neurons are presynaptic to the

IPCs, we propose that activation of STAT in GABAergic neu-

rons relieves the IPCs from repression, thus resulting in Dilp

release. This is reminiscent of the observation that first-order

neurons that respond to adipose-derived Leptin are inhibitory

GABAergic neurons expressing LepRs (Vong et al., 2011).

When LepRs are activated by Leptin, they regulate Stat3 phos-

phorylation, which inhibits the firing of the GABAergic neurons

via an unknown mechanism. This in turn relieves the repression

on the POMC neurons, allowing them to fire (Vong et al., 2011).

Thus, this circuit module is strikingly similar to what we observe

in the fly.

Many questions remain to be resolved regarding the signal-

ing mechanisms by which the JAK/STAT pathway regulates

GABAergic neurons. The target(s) of the JAK/STAT pathway in

regulating neuronal firing in mammalian GABAergic neurons

remains to be identified (Vong et al., 2011). It was suggested

that Leptin activation of STAT signaling may be required for the

long-term effects of Leptin’s action on energy homeostasis,

rather than for the acute effects of Leptin (Karsten et al., 2006),

and that the acute effects of Leptin on the membrane potential

of certain neuronal groups require activation of PI3-K signaling

rather than STAT (Schober et al., 2005). However, the role of

JAK/STAT versus PI3-K signaling in modulating the electrophys-

iology of the presynaptic GABAergic neurons has not yet been

clarified (Vong et al., 2011), in large part because previous

studies were done on non-GABAergic neuronal groups. Further

investigations into the role of JAK/STAT signaling in modulating

neurotransmission in GABAergic neurons will be necessary

to clarify how JAK/STAT signaling regulates their activities. Of

importance, based on the similarity of the circuits and the con-

servation of the signaling pathways, studies in the fly are likely

to provide insights relevant to mammalian neurophysiology.

Parallels between Upd2 and Leptin
The physiology of Leptin signaling is undoubtedly more complex

in vertebrates than in flies, and differs in several ways. For

example, upd2D mutant flies are smaller and leaner, whereas

mutations in Leptin in mammals are associated with obesity.

However, there are some striking parallels. We find that under

starvation, upd2 mRNA steady-state levels drop significantly

(Figure 2A), and there is a significant increase of upd2 mRNA
expression under high-fat diets (Figure 2F). This is similar to

the alteration in Leptin levels observed during starvation and

high-fat diets by Ahima et al. (1996). These authors examined

the role of Leptin in the physiology of starvation by providing

mice with exogenous Leptin during periods of nutrient restric-

tion, and found that the primary physiological role of Leptin

is to regulate the neuroendocrine system during starvation. Lep-

tin reduced the animals’ reproductive capacity and increased

stress hormone levels, which in turn increased the survival

capacity of the organism under adverse nutrient conditions

(Ahima et al., 1996). Consistent with this, flies with ablated

IPCs, which are unable to produce insulin, were shown to

perform much better under starvation conditions and increased

stress conditions (Broughton et al., 2005). Given that the role of

Upd2 is to promote insulin secretion, the reduction of Upd2

levels during starvation should decrease Dilp secretion and in-

crease the chances of survival under starvation (upd2Dmutants

were more starvation resistant than the wild-type controls; Fig-

ure S7B). Hence, in this context, the primary physiological roles

of Upd2 and Leptin converge.
EXPERIMENTAL PROCEDURES

Drosophila Strains and Diets

Details about the fly strains, transgenic fly construction, standard lab food

composition, and temperatures for specific crosses can be found in Extended

Experimental Procedures.

Triglyceride Measurements

Triglyceride assays were performed as previously described (Al-Anzi et al.,

2009). Further details can be found in Extended Experimental Procedures.

Hemolymph Glucose Measurements

Glucose concentration in the hemolymph was quantified as described previ-

ously (Géminard et al., 2009).

qPCR

Total RNA was prepared from triplicates of 15 fed (standard lab food) or

starved (>72 hr on 1% sucrose agar) age-matched adult males at 25�C.
cDNA was prepared using 1 mg RNA, and qPCR was performed using iQ

SYBR Green Supermix. alpha-tubulin and rp49 were used to normalize the

RNA levels. Relative quantification of mRNA levels was calculated using the

comparative CT method. See Extended Experimental Procedures for informa-

tion on the oligos.

Feeding Assays

The blue dye feeding assay was adapted from Xu et al. (2008). The CAFÉ assay

was performed as described by Ja et al. (2007).

Oil Red O Staining

Oil Red O staining was performed as previously described (Gutierrez et al.,

2007; Palanker et al., 2009).

Immunostaining, Confocal Imaging, and Analysis

Immunostaining of larval and adult brains was performed based on protocols

described by Pfeiffer et al. (2010). Images were captured with the use of Leica

SP2 and Zeiss LSM 780 confocal systems, and analyzed using Zeiss ZenLite

2009, Leica LAS AF lite, and ImageJ. To calculate the intensity of Dilp staining,

the mean gray value was calculated from maximum intensity projections

(MIPs) of a similar number of confocal stacks using ImageJ. For details on

the antibodies used, see Extended Experimental Procedures.
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Leptin Injections

Human recombinantLeptin (#L4146-1MG;SigmaAldrich)wasdissolvedper the

package instructions in a solution of Hcl and NaOH to a final concentration of

1 mg/ml to prepare the human Leptin stock solution, which was then frozen in

aliquots at�20�C. Fresh aliquots were thawed on ice before each experiment.

The working solution was made by diluting the human Leptin stock solution in

PBS to a final concentration of 0.001 mg/ml and injected into 10-day-old adult

males of y w and upd2D. PBS was injected into mock controls. The injections

were done by inserting the needle at the junction of the thorax and abdomen

close to the haltere using a microinjector (Femtoget; Eppendorf) at a pressure

of 305 kPa, using needles pulled in a pipette puller (vertical pipette puller,model

720; Kopf) at a heater setting of 14.1. At least 25–20 flies were injected per con-

dition. The flies were allowed to recover for 24 hr and then the brains were

dissected, stained, and analyzed, and Dilp2 levels were quantified as outlined

in the previous section. A minimum of three to five brains were analyzed per

experiment. The experiments were performed three independent times.

Tissue-Culture and Luciferase Assays

Drosophila Kc cells were maintained in Schneider’s medium (GIBCO), 10%

heat-inactivated fetal bovine serum (FBS; Sigma), and 5% Pen-Strep (GIBCO)

at 25�C. Experiments were run in 96-well plates (in six replicates per condition),

and 150 ng/uL of the appropriate dsRNA were seeded in the wells before the

start of the experiment. Each well was transfected with 0.05 ng 10XSTATLuc,

14 ng Act-Renilla, and 106 ng pAC-PL (used as carrier DNA). Then, 96 hr after

transfection, media supplemented with 4 nM human recombinant Leptin or

controlmedia supplementedwith no Leptinwere added to thewells. Luciferase

activitywasmeasuredusingDualGlo reagents (Promega) per thekit instructions

and measured using the Analyst GT plate reader. For details about the ampli-

cons used for dsRNA production, refer to Extended Experimental Procedures.

Statistical Analysis

Statistical analysis was performed using Welch’s t test with Excel.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2012.08.019.
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cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A

receptor. Cell. Mol. Life Sci. 69, 471–484.

Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., and Banerjee,

U. (2007). A Hedgehog- and Antennapedia-dependent niche maintains

Drosophila haematopoietic precursors. Nature 446, 320–324.

Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., and Schwartz, M.W.

(2006). Central nervous system control of food intake and body weight. Nature

443, 289–295.

Musselman, L.P., Fink, J.L., Narzinski, K., Ramachandran, P.V., Hathiramani,

S.S., Cagan, R.L., and Baranski, T.J. (2011). A high-sugar diet produces
obesity and insulin resistance in wild-type Drosophila. Disease Models

Mech. 4, 842–849.

Ni, J.Q., Markstein, M., Binari, R., Pfeiffer, B., Liu, L.P., Villalta, C., Booker, M.,

Perkins, L., and Perrimon, N. (2008). Vector and parameters for targeted trans-

genic RNA interference in Drosophila melanogaster. Nat. Methods 5, 49–51.

Palanker, L., Tennessen, J.M., Lam, G., and Thummel, C.S. (2009). Drosophila

HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab. 9, 228–239.

Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W.,

and Rubin, G.M. (2010). Refinement of tools for targeted gene expression in

Drosophila. Genetics 186, 735–755.

Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., and Clapham, D.E. (2001).

A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375.

Rodgers, M.E., and Shearn, A. (1977). Patterns of protein synthesis in imaginal

discs of Drosophila melanogaster. Cell 12, 915–921.

Rulifson, E.J., Kim, S.K., and Nusse, R. (2002). Ablation of insulin-producing

neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120.

Schober, M., Rebay, I., and Perrimon, N. (2005). Function of the ETS transcrip-

tion factor Yan in border cell migration. Development 132, 3493–3504.

Taguchi, A., and White, M.F. (2008). Insulin-like signaling, nutrient homeo-

stasis, and life span. Annu. Rev. Physiol. 70, 191–212.

Vong, L., Ye, C., Yang, Z., Choi, B., Chua, S., Jr., and Lowell, B.B. (2011). Lep-

tin action on GABAergic neurons prevents obesity and reduces inhibitory tone

to POMC neurons. Neuron 71, 142–154.

White, B.H., Osterwalder, T.P., Yoon, K.S., Joiner, W.J., Whim, M.D., Kacz-

marek, L.K., and Keshishian, H. (2001). Targeted attenuation of electrical

activity in Drosophila using a genetically modified K(+) channel. Neuron 31,

699–711.

Wright, V.M., Vogt, K.L., Smythe, E., and Zeidler, M.P. (2011). Differential activ-

ities of the Drosophila JAK/STAT pathway ligands Upd, Upd2 and Upd3. Cell.

Signal. 23, 920–927.

Wu, Q., and Brown, M.R. (2006). Signaling and function of insulin-like peptides

in insects. Annu. Rev. Entomol. 51, 1–24.

Xu, K., Zheng, X., and Sehgal, A. (2008). Regulation of feeding andmetabolism

by neuronal and peripheral clocks in Drosophila. Cell Metab. 8, 289–300.

Zeidler, M.P., Bach, E.A., and Perrimon, N. (2000). The roles of the Drosophila

JAK/STAT pathway. Oncogene 19, 2598–2606.

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman,

J.M. (1994). Positional cloning of the mouse obese gene and its human homo-

logue. Nature 372, 425–432.

Zhou, X., Liu, K.Y., Bradley, P., Perrimon, N., and Wong, S.T. (2005). Towards

automated cellular image segmentation for RNAi genome-wide screening.

Med. Image Comput. Comput. Assist. Inter. 8, 885–892.
Cell 151, 123–137, September 28, 2012 ª2012 Elsevier Inc. 137


	Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion
	Introduction
	Results
	Upd2 Plays an FB-Specific Role to Control Systemic Growth
	Upd2 Plays an FB-Specific Role to Control Metabolism
	Upd2 Signals the Fed State and Senses Fat and Sugars
	A STAT Reporter Is Expressed near the IPCs and Is Altered in Response to Starvation
	STAT Signaling in mNSC Neurons Regulates Systemic Growth and Metabolism
	JAK/STAT Plays a Role in Neurons Expressing Vesicular GABA Transporter to Modulate Systemic Growth and Metabolism
	Human Leptin Can Functionally Substitute for Upd2 by Signaling via the JAK/STAT Receptor Dome

	Discussion
	Upd2 Plays an FB-Specific Role in Communicating the Fed State to the Brain IPCs
	Existence of Nutrient-Specific FB-Derived Signals
	JAK/STAT Activation in GABAergic Neurons and Parallels the Adipose-Hypothalamic Circuit in Mammals
	Parallels between Upd2 and Leptin

	Experimental Procedures
	Drosophila Strains and Diets
	Triglyceride Measurements
	Hemolymph Glucose Measurements
	qPCR
	Feeding Assays
	Oil Red O Staining
	Immunostaining, Confocal Imaging, and Analysis
	Leptin Injections
	Tissue-Culture and Luciferase Assays
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References

	Supplemental Information
	Extended Experimental Procedures
	Drosophila Strains
	Food and Temperature
	Analysis of Cell Size and Number
	Triglyceride Measurements
	Colorimetric assay
	TLC assay

	Hemolymph Glucose Measurements
	qPCR
	Feeding Assays
	Blue dye assay
	CAFÉ assay

	Oil Red O Staining
	Immunostaining, Confocal Imaging, and Analysis
	Larval Stainings
	Adult Stainings
	Construction of Human Leptin Transgenic Flies
	Tissue-Culture and Luciferase Assays
	Calculation of the Michaelis Constant Km of Leptin

	Supplemental References




