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Simulating real cells using seven types of polygons 

From fluorescent microscopy cell images generated for Drosophila genome wide RNAi screen, 

we picked up seven types of cells (RGB colour image) and simulated them using seven types of 

polygons. All simulated polygons were illustrated using 8-bit gray level images (256 level gray 

scale with intensity 0 indicating black and 255 representing pure white).  

The key geometry and gray level parameters of each polygon are sampled from a series 

of random variables, which are defined according to the information summarized from real cells. 

For instance, we sampled from normal distribution with zero mean and standard deviation of 0.3, 

took absolute value of the samples and used them as the eccentricity for ellipses and rings; gray 

levels filled into an ellipse are sampled from uniform distribution in the range of [0, 50], while 

the rectangles are filled with gray levels sampled uniformly from the range of [120, 180]. Each 

polygon is described using six features, including mean and standard deviation of gray levels, 

and a group of geometry features, namely length of longest axis, length of shortest axis, 

perimeter and area of the polygons.  

Performance validation on published genetic screening dataset aiming at defining local 

signalling networks regulating cell morphology 

Dataset description 

We downloaded quantified data related to high throughput RNAi screen in [s1] from [s2] and use 

it to validate our method’s ability of restoring biological meaningful clusters. This dataset 

quantifies the morphological change of 12601 cell segments from 249 different treatment 

conditions (TCs). In each TC, Drosophila genes are either systematically over-expressed and/or 

inhibited by the use double-stranded RNA (dsRNA). A quantitative morphological signature 

(QMS) is defined for each TC based on the morphological change it causes. All TCs are 
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clustered based on their QMS, and seven out of 41 resulted clusters are highlighted in [s1]. We 

selected altogether 6782 cell segments from six of these biological meaningful clusters and use 

their quantified morphology indicators to carry out our experiments. The information of those six 

clusters is summarized in Table S1, and more information related to the work in [s1] can be 

found in supplementary materials. 

The work in [s1] represents the recent attempt of using fluorescent microscopy images 

based genetic screen to define local network regulating cell morphology.  A QMS is defined for 

each of the 249 TCs according to the observed morphological change on cultured Drosophila 

BG-2 Cells. Three levels of quantification are employed to generate a QMS for each TC: each 

individual cell image/segment is first quantified by 145 morphological features; the similarity of 

all cells in the dataset to twelve “reference phenotypes” is measured using twelve neural 

networks (NN) classifiers that distinguish training /reference phenotypes from each other; and 

finally a normalized Z-score for all cells from the same TC. Seven of twelve scores are used to 

form final QMS vector for each TC. 

Restoring biological meaningful clusters 

In this case we try to validate the ability of restoring biological meaningful phenotypes using our 

method. Six clusters highlighted in [s1], denoted as Cluster 6, 8, 18, 33, 1 and 27 were used. 

Quantified morphological indicators for altogether 2,800 cell segments were divided into a flow 

of image input consisting of 28 synthetic images with 100 cells in each image. Two experiments 

with different sets of existing phenotypes were carried out and the performance of our method 

was compared with four SVM based method with different parameters. Same as the experiments 

in main text, the accuracy with respect to each cluster/ phenotype was defined as the proportion 



of test samples restored into its original cluster. Both experiments (using our method and SVM 

based method, respectively) were repeated 100 times with different order of inputting test images.  

The average accuracies of both experiments are shown in [Additional file 2]. In general, 

the trend of performance is similar with those for synthetic datasets, with our method 

outperforming all SVM based method in accuracies for at least three of six clusters. When four 

clusters (6, 8, 18 and 33) serve as existing phenotypes [Additional file 2, left], we obtain more 

stable performance with smaller standard deviation across different clusters. On the other hand, 

when cluster 33 is removed from the set of existing phenotypes [Additional file 2, right], we get 

higher accuracy on cluster 8 and 18 as well as degraded performance for other clusters, 

especially cluster 27. Cluster 18 is the largest pheno-cluster in the dataset, featuring large, flat 

cells typically with extensive lamellipodia, and cluster 27 includes three TCs featuring cells 

displaying an aberrant number of long protrusions [s1], by adding cluster 33 (featuring cells 

subject to dsRNA TCs targeting at Rho1 family) to existing phenotypes, we can identify cells 

with spiky and polarity structure better, thus reduce the possibility of merging cells in cluster 27 

into cluster 18. 

This case shows our method’s ability of restoring biologically meaningful clusters/ 

phenotypes in the online scenario, and hence, can be used to extend genetic screen in [s1] to 

genome wide scale. In the supplementary of [s1], the authors raise the question about 

“indistinguishable phenotypes” in cluster 31, where treatment conditions related to three distinct 

phenotypes (wild type, CG3799 over-expression and Rac14V over-expression), which are all 

with prolonged shape but different polarity properties, can not be distinguished. One of the 

reason for such problem is that those undistinguishable TCs actually include cells with distinct 

phenotypes, and the ratio of cells in those different phenotypes are comparable to each other, but 



the scores for all those cells are normalized and averaged to form the signature for each TC. 

Therefore, the information included in multiple phenotypes is diminished.  

Applying the proposed method to cell phase identification of HeLa cells 

We validated the proposed online phenotype discovery method using the dataset related to cell 

cycle phase identification of HeLa cells in automated microscopy [s3], and the result indicates 

the prospect of using our methods on high-throughput dataset from various organisms. 

Cell culture and image acquisition 
The data is generated following the culturing protocol described in [s3]. In brief, HeLa H2B-GFP 

cells were thawed 6 days and cultured in DMEM with 10% FBS. Cells were incubated at 37°C in 

5% CO2. All cells were plated in 8 well #1 German borosilicate sterile bottomed plates (Nalge 

Nunc International) 18h before imaging at 25,000 cells per well (50, 000 cells per ml). Images 

were acquired 15 minutes apart during a 50h period on an automated epi-fluorescence TE2000-E 

Eclipse microscope (Nikon Instruments Inc., USA) with a motorized XYZ-plane stage. A total of 

200 images for each position were acquired and exported as 16bit uncompressed TIFF files. 

More details of cell culture and image acquisition are available in [s3]. 

Cell segmentation, feature extraction and feature selection 

The obtained images have one channel and focus on the information of cell nuclei. Herein we 

adopted the validated cell segmentation method proposed in [s3]: cell shape information is first 

obtained with a binarization process, then both intensity and shape information is used for local 

maxima generation and next gradient vector field are utilized to locate center of cells (local 

maxima), finally the detected cells are segmented via a seeded watershed algorithm.  

 Same as the newer Drosophila high-throughput dataset utilized in the main text of our 

paper, a same set of 211 morphology features from five categories are defined to describe each 



segmented cell. The difference is that in this HeLa dataset all the features are extracted from 

images with only one channel. Regarding to the analysis of similar dataset, and the necessity of 

specific job, different strategies have been proposed to carry out feature reduction [s3, s4]. 

Considering our job of identifying novel phenotypes from different groups of existing 

phenotypes, we continue to use the unsupervised feature selection method proposed in [s5]. An 

informative subset of sixteen features is selected. The geometric feature of “perimeter” is 

selected, along with 6 Gabor features, 4 moment features, 2 texture features and 3 shape features. 

Experiments and results 

We selected altogether 2753 images of segmented HeLa cells, and carried out expert ground 

truth labeling to classify them into four cell cycle phases, namely Inter-phase, Prophase, 

Metaphase and Anaphase. Typical images and number of cells in each phase for this selected 

dataset are presented in [Additional file 3]. Two rows of typical images for anaphase indicate one 

challenge of identifying cell cycle phases: the polymorphism of images related to a same phase. 

In the upper row, two separated chromosomes can be clear identified in opposite end of the 

mitotic spindle, but still remain in the same segment. Such images follow the definition of 

anaphase, however it is difficult to acquire such images using our protocol, thus more images of 

anaphase (up to 85%) have cells showing just separated chromosomes, i.e. cells with small size, 

prolonged shape and high intensity, like shown in the lower row of typical images for anaphase. 

These two types of anaphase images differ from each other greatly in size, shape and texture, 

thus add to the difficulty of automatic identification. In such occasion, our strategy of modelling 

existing phenotypes using mixture models is suitable to retain biological meaningful clusters. 

 We tested our method using a series of cross validation. In each experiment, two or three 

cell cycle phases were used as “existing phenotypes”, while the others were considered as 



“novel”. The dataset of existing phenotypes were divided evenly into five parts, and the GMM of 

existing phenotypes were estimated using 80% of the dataset, while the other 20% cells of 

existing phenotypes were combined with cells from the “novel” phenotype as test dataset. The 

test dataset were divided into small groups with 80-100 cells each to simulate a series of image 

input. We tested our methods under six different combinations of existing phenotypes, for each 

combination the five-fold cross validation were carried out 100 times, and the average accuracy 

on each cell phase with standard deviation across all the experiments are reported in Table S2 

with the definitions of accuracy for existing and novel phenotypes remain the same as in the 

main text. It can be seen that when anaphase served as existing phenotype, the two subtypes of 

images can be effectively modelled by GMM and the test samples of different styles can be 

accurately restored into their original phenotype. The accuracy for anaphase slipped when it 

served as novel phenotype, but the never fell below 80%.  

[Additional file 4] compares the average accuracy obtained by our method and SVM 

methods with different parameters, the results from three different combinations of existing 

phenotypes are recorded. Our method out-performed SVM based method in almost every 

experiment, in one rare exception of [Additional file 4 right], SVM with nu=0.1 slightly 

outperformed our method on anaphase (86.2% vs 85.7%), however its accuracies for prophase 

and metaphase were below 75%. Our method avoided the imbalance caused by SVM with 

different parameters, and performed consistently in the identification of cell cycle phases on 

HeLa cell dataset. 

Discussion on using GMM for phenotype modelling 

Instead of hanging with single Gaussian model, we are using Gaussian mixture model to describe 

each biological meaningful cluster. Theoretically GMM can approximate closely any continuous 



density function for a sufficient number of mixtures and appropriate model parameters [s6]. In 

this study, we checked the histogram of the samples under different phenotypes. We found 

Gaussian mixture model can be applied to model the distribution. Considering the issue of space, 

we deleted in the first version. In the revision, we present such information in [Additional file 5]. 

[Additional file 5] shows the information of feature distribution for the four existing 

phenotypes used in Case 1-4 in the original paper. In column three of [Additional file 5], a 

histogram is shown for each phenotype, and it shows the distribution of Major axis length, one of 

the selected features to describe each cell, and the parameter for this feature in the final GMM is 

also shown. In column four, the complete GMM estimated for each phenotype is presented. 

Improving the strategy of sampling reference dataset in gap statistics method 

We improved the strategy of defining reference distribution and sampling reference dataset for 

Gap Statistics method [s7]. The reference distribution is a null model of data structure. In [s7], 

reference sets are sampled uniformly either from the range of observed values for each feature, 

or the range of a box aligned with the principle components of data. As shown in the left part of 

[Additional file 6]. This brings a problem that, when the dataset contains distinct clusters, there 

would be blank area (indicated using blue circles) in the support defined by bounding boxes 

align with the whole dataset. Although the bounding box aligned with the principle component 

can partly solve this issue, the blank area remains (indicated by blue rectangle). Worse still, the 

bounding boxes define the support of the reference distribution, the reference dataset are sampled 

from such distribution while the sample number is usually selected as the same as the real dataset 

[s7]. Thus, we have a “sparser” dataset than the real one, because some samples are from the 

blank area.   



On the other hand, we define the reference distribution to supply a null hypothesis of the 

data structure reflecting the situation when the dataset was mono-genous. Now that we have built 

GMM for existing dataset, and using uniform distribution as null hypothesis would bring the risk 

of splitting biological meaningful clusters. It is also encouraged in [s7] that the information of 

existing phenotype be included because uniform distribution is not necessarily the optimal choice 

of reference model when the feature space dimensionality is bigger than one.  

By taking reference distribution from separate binding boxes, we shrink the blank area 

caused by the difference between existing clusters, thus the reference dataset can focus on where 

data really lies. By using the GMM as the reference distribution, we bring in the exact 

information on the mono-genous dataset, thus we can avoid splitting existing phenotypes, even if 

they are formed by quite distinct Gaussian items. The right part of [Additional file 6] illustrates 

the innovation of our methods. 

Novelty detection and one-class SVM 

Novelty detection problem is formulated as follows: given a set of independently identically 

distributed (i.i.d.) training samples, 1,...,
N

nx x X∈ ⊆ R , drawn from a probability distribution in 

feature space, P, the goal of novelty detection is to determine the ‘simplest’ subset, S, of the 

feature space such that the probability that an unseen test point, 'x , drawn from P lies outside of 

S is bounded by an a priori specified value, (0,1]ν ∈ . In other words, such problem is handled as a 

simplified version of density estimation problem. One-class SVM, introduced in [s8], is widely 

used in novelty detection. In the formulation of one-class SVM, existing dataset are first mapped 

into a feature space using a kernel function ( , ) ( ( ) ( ))K x y x y= Φ ⋅Φ and then maximally separated from 

the origin using a hyper-plane , a decision function is thus obtained for each unseen test point 

'x , ' '( ) sgn( ( ) )f x w x ρ= ⋅Φ −  , specific label, e.g. -1 is defined for outliers and the parameters{ , }w ρ  are 



determined by solving a quadratic programming problem similar to the basic SVM case. 

Compared with basic SVM, a parameter (0,1]ν ∈  is involved in this problem, and it is the 

asymptotic upper bound of training data which are labelled as outliers. Both training and test 

samples are classified into two categories: known and novel. If the training set itself is not 

homogenous, the set of support vector would vary dramatically with ν , so ν  should be selected 

according to the prior knowledge of outlier existence. We use a Gaussian kernel with width of 

0.5 to map the features into high dimension space, i.e. 20.5*( , ) x yK x y e− −=  

Modifying one-class SVM based novelty detection to fit it into the context of online 

phenotype discovery 

Novelty detection methods do not automatically fit in the scenario of online phenotype discovery. 

These methods need to continuously re-train their model so that the newly discovered 

phenotypes won’t be considered as outliers in the future. However, such re-training is intractable 

when millions of existing cells pile up and new images are continuously generated. Worse still, 

novelty detection cannot differentiate multiple existing and novel phenotypes. 

 We modify one-class SVM based novelty detection into a two-step method for each new 

image and compare its performance with our method. In the first step, we carry out traditional 

novelty detection to new images, but we use the huge existing dataset only once while iteratively 

updating the support vectors of one class model with new images. After novelty detection with 

one image, we re-train the one-class model, only keep the support vectors and combine these 

support vectors with the next new image. In the second step, we train a series of linear SVM with 

samples from one pair of existing phenotypes, and classify each sample in new image using 

multiple SVM and determine its phenotype by majority vote among all SVM. 



 We propose a possible way to extend novelty detection method in the scenario of online 

phenotype discovery with multiple existing and novel phenotypes. Such methods can be 

improved through more careful selection and training of classifiers and refined design of model 

updating procedures.  
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Supplementary figures 
 

 

Additional file 2-Performance comparison on restoring biological meaningful cluster from published high throughput 

screen data 

Given certain group of existing pheno-clusters, and images including multiple (novel and existing) phenotypes, the accuracy values 

for six phenotypes across 100 image input orders are shown. Four different sets of parameters are used for SVM based method. Left 

Cluster 6, 8, 18 and 33 are existing phenotypes; Right Cluster 6, 8 and 18 are existing phenotypes.



 

Additional file 3-Typical images and information for datasets of four cell cycle phases in HeLa cells 



 

Additional file 4-Performance comparison on cell cycle phases identification using HeLa dataset 

Given certain group of existing phenotypes, and images including multiple (novel and existing) phenotypes, the accuracy values for 

four cell cycle phase across 100 times five-fold cross validations are shown. Four different sets of parameters are used for SVM based 

method. Left Dataset for inter-phase and prophase are existing phenotypes; Middle Dataset for inter-phase and metaphase are existing 

phenotypes; Right Dataset for inter-phase and anaphase are existing phenotypes.



 

Additional file 5-Information on four existing phenotypes for case 1-4: histogram for 
major axis length and complete model parameters 



 

Additional file 6-Improving the strategy of taking reference dataset for gap statistics: 
motivation and innovation 

 



Supplementary Tables 

Table S1. Information for six clusters selected from quantified dataset in [s1]   
Cluster # in [s1] 6 8 18 33 1 27 
Annotation for  
clusters in [s1] 

Protrusion/ 
Adhension 
formation 

Lamellipodi
a formation 

Adhension 
disassembly/ 
cortical tension 

Rho1  
Cluster 

Rac1  
cluster 

MT  
capture 

# of TCs 37 25 74 19 4 3 
# of cells for training 1183 853 1039 877 0 0 
# of cells for testing 1000 300 600 200 400 300 
Total # of cell segments 2183 1153 1639 1077 422 308 

 

Table S2. The performance of our method in cross validation on cell cycle phase dataset 
Mitosis phases Avg. accuracy (%) with (standard deviation, %) across 100 times five-fold cross 

validation using different experiment design   
(results for  novel phenotypes are labeled using italic and bold font) 

Inter-phase 89.2 (2.2) 90.4 (1.6) 91.4 (2.1) 87.3 (2.7) 86.7 (1.9) 86.4 (2.2) 

Prophase 82.1 (3.1) 88.1 (2.9) 87.6 (3.4) 84.9 (2.8) 81.6 (2.9) 82.7 (3.1) 

Metaphase 86.4 (2.6) 85.7 (2.8) 88.7 (3.4) 83.8 (2.6) 85.2 (2.1) 84.1 (2.5) 

Anaphase 90.6 (1.9) 89.7 (2.2) 83.4 (3.4) 84.6 (3.1) 84.9 (2.9) 85.7 (2.4) 

 
 
 
 
 
 


