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Supplemental Materials and Methods 

Protocols 
Overexpression constructs and dsRNA: All RFP-tagged constructs were created using 
Gateway Technology (Invitrogen) by subcloning of cDNAs into the pPRW (N-terminal 
RFP, UASp promoter) or pPWR (C-terminal RFP, UASp promoter) destination plasmids 
(Drosophila Genome Resource Center). Table S1 describes these constructs in detail. 
cDNAs were kind gifts from Greg Bashaw (University of Pennsylvania), Rick Cerione 
(Cornell University), Ulrike Gaul (Rockefeller University), Chihiro Hama (University of 
Tokyo), and Bingwei Lu (Stanford University). Alternatively, cDNAs were PCR 
amplified from full-length Drosophila ORFs provided by Drosophila Genome Resource 
Center (Berkeley, USA). dsRNA was prepared as described in detail at www.flyrnai.org.  
 
Cell culturing and stochastic labeling: Drosophila DM-BG2 cells (referred to as BG-2 
cells in this paper) were cultured in Shields and Sang M3 insect media (Sigma), 10% 
Fetal Bovine Serum, 40 μg/ml (Sigma), 10 μg/ml Insulin (Sigma), and Penicillin-
Streptomycin (Gibco). All cells were transfected with actin-GAL4, and UAS-GFP 
containing plasmids using Effectene transfection reagent (Qiagen). For dsRNA 
experiments, cells were co-transfected with dsRNAs as described in detail at 
www.flyrnai.org. For overexpression experiments, cells were co-transfected with 
plasmids encoding RFP-tagged proteins.  
 
Treatment Conditions: As Rho signaling has been extensively implicated in the 
regulation of the cytoskeleton, we explicitly sought to generate a number QMSes 
corresponding to a diverse spectrum of Rho, Rac, or Cdc42 activity. We proposed that 
these signatures would not only represent distinct cellular morphologies, but that other 
cellular states with similar signatures could be classified as playing a role in Rho-, Rac-, 
or Cdc42-specific signaling pathways. In order to generate different types of GTPase 
activity, we overexpressed constitutively activated GTP-locked mutants of Drosophila 
Rho1 (RhoV14), Rac1 (RacV12), and Cdc42 (Cdc42V12), “fast-cycling” mutants of Rho 
(Rho30L) and Rac (RacF28L), a “slow-cycling” mutant of Cdc42 (Cdc42Y32A), as well 
as full-length and N-terminally truncated forms of particular Drosophila RhoGEFs. 
Furthermore, we specifically targeted the majority of Drosophila RhoGEFs, RhoGAPs, 
and GTPases for dsRNA-mediated gene silencing. GTP-locked forms of both Rho and 
Rac have been long observed to stimulate dramatic changes in the actin cytoskeleton and 
can profoundly affect cell morphology (2, 3). Similar to GTP-locked mutants, “fast/slow” 
cycling mutants of GTPases are also hyperactivated enzymes, but due to the fact they 
cycle through both GDP- and GTP- bound states, are significantly more biologically 
potent. For example, while overexpression of GTP-locked forms does not induce 
transformation in mammalian cells, fast/slow-cycling mutants are highly oncogenic (4-6). 
N-terminal truncation has repeatedly been shown to stimulate RhoGEF activity, which is 
likely due to the autoinhibitory effects of regions N- terminal to the catalytic DH/PH 
domains (7).  
 

 5

http://www.flyrnai.org/
http://www.flyrnai.org/


Our final dataset comprises 249 treatment conditions (TCs) corresponding to: (1) The 
overexpression by transient transfection of 20 different RFP-tagged mutant forms of Rho 
GTPases, RhoGEFs, kinases, and other regulators of the microtubule and actin 
cytoskeletons (see Table S1). (2) 173 dsRNAs chosen at random from a larger collection 
of dsRNAs targeting all known GTPases, GEF, GAPs, and other genes implicated in 
cytoskeletal organization. This collection of dsRNA overlaps considerably with the 
collection of ~900 dsRNAs used by our lab in previous morphological screens (8). (3) An 
additional 45 dsRNAs targeting the majority of known Drosophila RhoGEFs, GAPs, and 
GTPases (4) Overexpression of an activated form of the RhoGEF SIF/still-life in 
combination with various dsRNAs chosen at random. 
 
Overexpression Construct Mutation Consequence of Mutation Reference 
ΔN-CG3799 Deletion of 517 N-

terminal amino acids 
of Drosophila 
CG3799 (isoform A). 

Predicted to be constitutively 
activated. 

This study 

ΔN-RhoGEF3 Deletion of  245 N-
terminal amino acids 
of Drosophila 
RhoGEF3 (isoform 
C) 

Likely not constitutively active 
(9). 

This study 

ΔN-SIF Deletion of 1214 N-
terminal amino acids 
of Drosophila SIF 
(Type 2).  

Predicted to be constitutively 
activated as per previously 
described mutants with similar 
truncations (10).  

This study 

Aurora-B kinase (human) constitutively 
active 

Mutation in kinase 
domain 

Hyperactivated kinase This study 

CG3799 full-length N/A N/A This study 
Cdc42Y32A (Human) Y32A Promotes “slow-cycling” 

between GTP- and GDP- bound 
states of Cdc42 resulting in 
hyperactivation of Cdc42 

(6) 

dLis1 full-length N/A N/A This study 
dMEMO. Full-length CG8031. Drosophila 
ortholog of mammalian Memo (11). 

N/A N/A This study 

dPar-1 full-length N/A N/A (12) 
dSTRAD. Full-length CG7693. Drosophila 
ortholog of mammalian STRAD (13). 

  This study 

Gαι65A full-length N/A N/A This study 
GEF64C full-length N/A N/A (14) 
Moody-beta full-length N/A N/A (15) 
Neuroglian (Drosophila) full-length N/A N/A This study 
RacF28L (Human) F28L Promotes fast-cycling between 

GDP- and GTP- bound states of 
Rac resulting in hyperactivation 
of Rac 

(5) 

RacV12 G12V Decreases intrinsic GTPase 
activity and causes Rac to be 
unresponsive to RacGAPs. 

(3) 

RhoF30L (Human) F30L Promotes fast-cycling between 
GDP- and GTP- bound states of 
Rho resulting in hyperactivation 
of Rho 

(5) 

RhoV14 G14V Decreases intrinsic GTPase 
activity and causes Rho to be 
unresponsive to RhoGAPs. 

(2, 16) 

SIF full-length (Type 2) N/A N/A (10) 
TumL/JAK Mutation in kinase 

domain 
Results in hyperactivation of 
Drosophila JAK kinase  

(17) 

Table S1:  Summary of RFP-tagged expression constructs used in this study.  
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Image acquisition: Following transfection of BG-2 cells with plasmids and/or RNAi, 
cells were cultured in 384-well plates and fixed in 4% paraformaldehyde in PBS 4 days 
post-transfection. Images were acquired using an automated Nikon TE300 microscope 
with a 40× objective and HTS MetaMorph software (Universal Imaging) running an 
automated Mac5000-driven stage, filter wheel and shutter (Ludl Electronic Products), an 
automated Pifoc focusing motor (Piezo) and an Orca-ER cooled-coupled device camera 
(Hamamatsu). For the majority of Treatment Conditions (TCs) involving a single dsRNA 
(213 dsRNAs), images were acquired in semi-automated and blinded fashion from a 
single well. The identity of these dsRNA was determined following the completion of 
segmentation, feature extraction, and QMS-based clustering procedures. For the 
remainder of the TCs involving single dsRNAs, images were acquired from multiple (2-
12) wells from the same 384-well plate. In cases where cells were transfected with RFP-
tagged overexpression constructs, images were acquired from multiple wells from the 
same 384-well plate. As a control, two GFP-alone TCs were imaged at the beginning 
(November 2005) and completion (October 2006) of the experiments described in this 
study. 
 
Rho activation assay: Rho activity in whole cell-lysates was determined using the G-
LISA RhoA Activation Assay Biochem Kit (Cytoskeleton Inc.). The assay was 
performed according to manufacturer’s instructions. 
 

Cell Image Selection Software 
Stochastic labeling (see Protocols above and main text) very successfully diminished the 
density of labeled cells in each image to the point where individual cells were easily 
distinguished by eye.  We tested several automated image segmentation algorithms and 
found that each still yielded frequent instances of multiple cells combined into single 
segments, cells divided into multiple segments, and inaccurate segment boundaries.  
Factors contributing to error generation included: (i) the uneven distribution of label 
intensities within labeled cells (i.e., some cells were brightly and others dimly labeled), 
(ii) background, (iii) the very irregular shape of BG-2 cells, (iv) the inability to use other 
non-stochastically labeled image channels to assist segmentation.  Instead of completely 
automating segmentation, we developed a software application (CellSegmenter) for 
computer-assisted segmentation.  
 
CellSegmenter is a MatLab GUI application that allows a user to choose and display a 
TIFF image of a set of cells, manually adjust an image intensity threshold until the 
threshold boundary best fits a cell boundary, and then to select this thresholded cell 
boundary as a cell segment using point and click operations.  Different thresholds may be 
specified for different cells in the image field, and cells that are in contact may be 
separated manually by drawing short CellSegmenter "borders" between them.  When cell 
segment specification is complete, the segmentation may be saved for subsequent 
processing by image analysis algorithms or for subsequent re-adjustment of segment 
boundaries by CellSegmenter.  Because CellSegmenter requires human intervention, it is 
not suitable for very high-throughput applications.  However, it is appropriate for small-
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to-medium throughput applications involving up to a few 1000s of images in each of 
which up to 10s of cell segments are selected. 
 
CellSegmenter requires MatLab 7.1 or higher and was written, tested, and used on 
Windows XP computers exclusively and we cannot provide assurances that it will run on 
other versions or operating systems.  However, the CellSegmenter source code is 
available on http://arep.med.harvard.edu/QMS/ along with documentation on the 
installation and usage of CellSegmenter. 

Feature Analysis 

Overview 
Over the course of ~10 months, 12,601 individual cell segments were generated using 
CellSegmenter.  Automated image analysis algorithms were developed to compute 145 
mathematical values (features) for each of these segments from the cell segment image 
created by CellSegmenter and the original GFP intensity image.  While information on 
these cells derived from other stains and labels was obtained and used in some cases (e.g., 
to confirm co-transfection and expression of RFP-tagged constructs in GFP expressing 
cells), no such information was used in the calculation of features.  The features were 
designed to interrogate aspects of the overall geometry and size of the cell segments, the 
stochastic GFP label intensity, and the statistical distribution and 'texture' of this intensity 
with relation to cell geometry.  Finally, many features measured attributes of the shape of 
the cell boundary as rendered by the cell segment, including the number, size, shape, and 
distribution of processes and undulations of the boundary as analyzed at both a small and 
a large scale.  These overall geometry and boundary-level features represent information 
unobtainable from complex cell images obtained without stochastic labeling because of 
cell crowding and overlaps normally prevent their clear discernment.  The feature set also 
included a number of previously published features reported to be useful for analyzing 
the cytoskeletal behavior of cells.   
 
On a feature by feature basis, features obtained for each cell segment were normalized to 
Z scores relative to their values over a subset of 145 GFP control cells which were 
transfected only with a construct coding for constitutive expression of GFP without other 
perturbation.  All subsequent analysis used these normalized features. 
 
The 12,601 cell segments were obtained in 14 separate batches and corresponded to 273 
treatment classes (TCs), where a TC represents a cell sample perturbed by a set of 
dsRNAs and/or constructs driving constitutive expression of a wild-type or mutant gene.   
In most cases, a TC where a dsRNA is used to inhibit a target gene was derived from cell 
segments from a single well of a single plate; however a subset of 32 TCs were derived 
from cells in multiple wells.  These were analyzed separately to test for replicability of 
results (see Clustering and Replicability Analysis in Quantitative Morphological 
Analysis, below) and were subsequently aggregated.  Outside of these 32 TC replicants, a 
second set of GFP control segments (October 2006) was also generated outside of the 
initial sample of GFP 145 control cells (November 2005).  Because only the original 145 
GFP controls were used to normalize all other cells, and extensive computations had 
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already been done to develop neural network classifiers (see below) for several TCs 
based on these normalized values, the second set of GFP control segments was not 
aggregated with the first, but was kept as a separate TC. TCs where cells are 
overexpressing RFP-tagged proteins are typically segments from cells in multiple wells 
that were cultured and fixed in parallel. 
 
Normalized feature data for all 12,601 cell segments, and TC means and standard 
deviations of all these data, are provided as supplemental data files on our web site 
http://arep.med.harvard.edu/QMS. 
 
In cases where the same gene was targeted by different amplicons, or the same amplicon 
was present in multiple wells, the individual TCs were merged into a single TC. With the 
mergings taken into account, the dataset described in this study contained 249 TCs. 
 

Feature Generation Process 
 
The feature generation process is described in Figure S1.  Cell samples are arrayed in a 
subset of wells in 384-well plates in which each well contains distinct dsRNAs and/or 
other constructs, so that each well corresponds to a different RNAi or overexpression 
treatment.  Each well also contains a GFP construct that stochastically labels the cells 
(see Protocols and main text), so that only a random, sparse, and dispersed subset of cells 
within the crowded population appears in the GFP channel in a fluorescent microscope 
field.  Under the hypothesis that competent cells will pick up all constructs in the well, 
GFP-labeled cells will also express the perturbation specified by the dsRNA or other 
constructs in the well.   
 
TIFF images of fluorescent microscopy fields were acquired as described in Protocols 
above.  As any given image field contains multiple labeled cells, the images are 
segmented using the CellSegmenter application (see Cell Image Selection Software 
above).  CellSegmenter enables a user to adjust intensity thresholds until they match 
visible boundaries of the cell, draw small borders between touching cells, and select and 
save cell segments considered to be good representations of well imaged cells.  For any 
given TIFF image, the output of CellSegmenter operations is a single csf file that 
describes all of the segments selected from the image, and a set of csm files each of 
which stores the CellSegmenter-defined boundary of a single cell processed and selected 
from the image (see Figure S1a).   
 
In the next step (Figure S1b), the csf, csm, and original TIFF image for each cell segment 
are read by a MatLab program designed to generate a large number (154) of distinct 
numerical features describing attributes of the segment.  The csm file provides 
information on the boundary defined for the cell segment, the TIFF image contains the 
intensity of the label captured by fluorescence microscopy, and the csf file indicates the 
location of the csm-captured cell segment boundary within the larger TIFF image.  The 
csm file is therefore the source of all features that provide information on the shape of the 
cell, while the csm and the intensity information in the TIFF image together are the
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TIFF 
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1 per TIFF 
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selected 

cell 

(a) 

145 normalized non-status 
features for 12601 cell 

segments in 273 
ImgClasses 

Figure S1: Feature generation.  (a) Fluorescence microscopy of cell samples generates TIFF 
images that are analyzed with CellSegmenter to yield cell segments that represent selected 
individual cells in image.  Segment positions and boundaries are saved in csf and csm 
files.  (b) For each cell segment, csf, csm, and original TIFF files are analyzed by a feature 
generation program to produce 154 numerical features / segment. (c) Among the cell 
segments for which features are computed are 145 GFP control cells (green) that serve as 
a reference set.  Features for all segments are normalized to Z scores for each segment 
feature relative to the values in this reference set.  Nine status indicator features are 
removed, and each segment is annotated with an ImgClass that describes the treatment (an 
RNAi or overexpression) used to generate it. 

145 
GFP 
controls

154 features / 
cell segment 

154 features / 
cell segment 

154 features / 
cell segment 

154 features / 
cell segment 

154 features / 
cell segment 

154 features / 
cell segment 

Normalize by 145 
GFP control 

images 

Add ImgClass & 
remove 9 status 

indicators 

features
cells 

(c) 

145 
GFP 
controls

 source of all features that describe the intensity distribution of the cell.  All features 
derive only from the GFP signal generated in the stochastically labeled cells.  While in 
theory additional labels such as DAPI or phalloidin may be used to acquire information 
about other cell consitutents, such labels will be global rather than stochastic and yield 
signal for all cells in the crowded image rather than just the sparse GFP-stochastically 

 10



labeled cells; thus it will not be possible to distinguish what part of the signal from these 
labels is associated with an isolated GFP-labeled cell from the part of the signal 
associated with non-GFP-labeled cells lying above or below it.  The 154 features are 
described in the section Definitions of Individual Features below. 
 
The 154 features computed by the feature generation program were obtained for 12,601 
individual cell segments comprising 273 distinct treatments processed in 14 different 
batches over the course of ~10 months.  Mathematically, the different features contain 
different kinds of information and have values that lie on many different scales.  To ease 
feature comparison and analysis, the 154 features were therefore normalized with 
reference to a set of 145 cells from the second batch of cells that were set up as GFP 
controls (ImgClass = gfp1) (see Figure S1c).  These 145 cells were treated only with the 
GFP construct for stochastic labeling and no other dsRNA or expression construct.   The 
normalized value of any feature of any cell segment is simply the Z score of the un-
normalized feature value relative to the mean and standard deviation of the un-
normalized feature values of the 145 GFP controls.  At this time, nine 'status indicator' 
features (see below) were removed, leaving 145 normalized non-status feature values per 
cell segment, and each cell segment was annotated with an ImgClass that describes its 
treatment class.  A subset of 32 of the 273 treatment classes comprised cells from 
multiple (2-5) wells, some of which were processed in different batches, and which 
therefore comprise biological replicates.  In the final version of the file of normalized 
feature values for all segments, all segments in replicate treatment classes are given the 
same ImgClass and combined in computing means, variances, and other statistics for the 
ImgClass.  However, in one series of calculations described below, the individual well 
cell segments from these 32 treatment classes were not combined in order to test the 
consistency of the feature values obtained in replicate treatments (see Clustering and 
Replicability Analysis).  The 32 treatment classes that comprise replicates are given in 
Table S2.   
 
In addition to these 32 treatment classes comprising replicate samples, a second sample 
of 29 GFP images without additional dsRNA or overexpression constructs was analyzed 
in batch 14.  Although these comprise a replicate of gfp1 GFP control treatment class 
described above, they were held apart as a separate treatment class (ImgClass = 
gfp_06Oct17) and therefore not combined with gfp1 segments in normalizing features or 
in computing statistics for GFP controls.  The reason was that the gfp1 class alone was 
used in normalizing the data on which neural network classifiers were trained and 
optimized (see manuscript): therefore, to avoid confusion about which GFP control cells 
were used in classifier training, and likewise avoid the high computational overhead 
entailed by combining the new and old GFP controls and retraining the neural networks, 
the gfp_06Oct17 images were left apart the earlier set of gfp1 controls. 
 
Generation of features for all 12,601 cell segments over all 14 batches of images was 
performed on a single cluster of computers to minimize the possibility that different 
versions of MatLab running on different systems could compute some MatLab built-in 
functions differently.  This was observed once during early testing.  Over the course of 
the 10 months during which the cells in this study were analyzed, there were two changes 
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ImgClass #reps
CdGAPr:CdGAPr_RNAi__P1I2 2
cenG1A:P1O17__P1P17 2
CG10188:CG10188_RNAi__P1D11 2
CG11490:P1B1__P1B3 2
CG12102:P1N16__P1I12 2
CG15611:P1M10__P1P19 2
CG30115:CG30115_RNAi__P1N21 2
CG30158:P1K6__P1M6 2
CG30372:P1D17__P1N6 2
CG30440:CG30440_RNAi__P1J8 2
CG30456:P1L10__P1O18 2
CG3799:CG3799_RNAi__P1G10 2
CG8243:P1I14__P1O6 2
empty:P1F9__P1I23 2
GEF64C:GEF64C_v361__GEF64C_08319__GEF64C_08318 3
G-gamma30A:P1N15__P1M15 2
Graf:Graf_RNAi__P1P7 2
jitterbug:P1F13__P1I4 2
mbc:mbc_16995__mbc_36492 2
paxillin:P1M19__P1C11 2
pbl:pbl_33336__pbl_11381__pbl_26301__pbl_RNAi__pbl_33335 5
RacGAP50C:RacGAP50C_33345__RacGAP50C_07575 2
Rho1:Rho1_RNAi__P1F21__P1J16 3
RhoGAP15B:RhoGAP15B_RNAi__P1M9 2
RhoGAP16F:RhoGAP16F_RNAi__P1I11 2
RhoGAPp190:RhoGAPp190_RNAi__P1O9 2
RhoGEF2:RhoGEF2_07531__RhoGEF2_29373 2
RhoGEF3:P1O16__P1E2 2
RhoGEF4:P1F6__RhoGEF4_11011 2
Sar1:P1M14__P1E20 2
Sos:Sos_RNAi__P1N17 2
Trio:Trio_RNAi__P1B4 2

Table S2: Treatment classes (ImgClasses) comprising multiple samples (replicates)
in MatLab release.  Judged by small scale test recalculations of data, we saw no evidence 
of significant change in MatLab function calculation. 
 

Image Normalization 
 
All images are single-channel grayscale images of the GFP label that were normalized so 
that the maximum intensity in the image is 1.0.  The simple computer-assisted 
thresholding used to segment images that is enabled by the CellSegmenter application 
(see Cell Image Selection Software) precludes the need for elaborate background 
analysis and segment filtering, and most features are computed directly from the 
normalized intensity image without background subtraction.  Exceptions arise for 
computation of the GFP bright spot (see below) and the segment mass image. 
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RhoV14_6.1: centroid, bright spot, COM

lenscale=124.9

RhoV14_6.1: bright spot, COM centroid, 

lenscale=124.9

Figure S2: Cell RhoV14_6.1 with boundary defined by CellSegmenter, plus the GFP bright 
spot boundary and its three cell centers: GFP centroid (centroid), GFP bright spot 
centroid (bright spot) and center of mass (COM).  Top: cell grayscale image with centers 
identified by colors in figure title.  Bottom: cell false color image with same centers and 
boundaries indicated in black.  lenscale = length_scale (see text) indicates the scale.  

 
The segment mass image is used for features which interpret the pixel intensity 
distribution as a probability distribution.  It is derived from the normalized intensity 
image by: 

1. subtracting the value of the threshold used to define the segment in CellSegmenter 

2. setting the value of any pixels exterior to the segment to 0 

3. setting the value of any pixel interior to the segment that is <0 to 0 

4. normalizing so that the total sum of all pixel values is 1.   
 
Note that 3 above implies that it is possible for a pixel within a CellSegmenter-defined 
segment boundary to have an intensity value < the value of the threshold that defines the 
segment.  This situation only arises because CellSegmenter fills all holes in threshold-
defined segments before returning a segment boundary.  Normally, when applying a 'raw' 
threshold to a cell image (especially one with a complex 'texture') the resulting raw 
segment may contain holes that represent intensity depressions within the cell that are 
deep enough to go below the threshold.  By filling these holes, CellSegmenter represents 
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RhoV14_6.1: edge features

Edge data:
# pixels=1116
pixel density=0.091
mean lnth=16.2
rel. mean lnth=0.13

lenscale=124.9

RhoV14_6.1 (fc): edge features

Edge data:
# pixels=1116
pixel density=0.091
mean lnth=16.2
rel. mean lnth=0.13

lenscale=124.9

Figure S3: Edge image of cell RhoV14_6.1 with several edge feature values indicated.  Edges 
interior to the cell segment are indicated by blue lines in grayscale image (top) and by 
black lines in false color image (bottom).  Edges that may exist outside of or extend beyond 
the cell segment are indicated with dim lines and are not considered in edge feature 
calculations.  Edge features calculated include the total number of edge pixels, the pixel 
density (total number of edge pixels / cell segment area), the mean edge length, and the 
mean ed  length_scalege length divided by (bottom left).

the cell as a region with a simple closed boundary that ignores these interior depressions.  
Thus, subtracting the CellSegmenter threshold intensity from the original pixel intensities 
in this region (step 1) will yield negative values (step 3) in any such hole.  

Figures Illustrating Feature Analysis 
Feature generation for cell segments involves computing numerical values from the 
geometry of the segment and the intensity distribution within it.  To illustrate the aspects 
of the geometry and intensity distribution that are analyzed, Figures S2-S12 are presented 
for a particular cell RhoV14_6.1 = cell segment 1 from the image RhoV14_6, a sample 
that was treated with the GFP stochastic label construct and a construct expressing a 
constitutively active Rho (RhoV14).  This cell happens to be the cell in the training set 
for the RhoV14 neural network classifier (see Quantitative Morphological Analysis and 
main text) that scored highest on this classifier.   
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RhoV14_6.1 (LoSmooth): smoothed vs. original boundary

RhoV14_6.1 (HiSmooth): smoothed vs. original boundary

Figure S4: Boundary smoothing for cell RhoV14_6.1: LoSmooth (top) and HiSmooth 
(bottom) (see text).  In each case, the smoothed boundary is represented by a contour 
which alternates color between green and red, with green indicating arcs of positive 
curvature and red indicating arcs of negative curvature.  The original cell boundary (see 
also Figure S2) is indicated as an alternating purple and cyan contour, with cyan for 
regions of original boundary assigned green in the smoothed boundary and purple for 
regions of original boundary assigned red in the smoothed boundary.  Note how 
smoothing simplifies the original convoluted boundary by removing small irregular 
protrusions, and that high smoothing achieves a larger degree of simplification and shape 
abstraction than low smoothing. 

General Aspects of Features 
 
1 Status features: Nine of the 154 features generated for each cell segment are status / 

quality indicators that describe the success or quality of various aspects of 
segmentation, feature analysis, and processing.  These nine features are described 
here even though they are removed from the normalized non-status feature data (see 
above).    

2 Key reference elements: Many features are computed with respect to reference 
elements within the cell segment.  Key reference elements include: 
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RhoV14_6.1: ruffle area

RhoV14_6.1 (fc): ruffle area

Figure S5: "Ruffle areas" as defined in (1) for cell RhoV14_6.1 in grayscale image (top) and 
false color image (bottom).  Ruffle areas are areas of increased intensity near the cell 
segment border.  They are shown in the top outlined in blue.   

2.1   Cell segment boundary: This is the boundary defined by the user in 
CellSegmenter (see Figure S2). However, as described below, many features 
consider mathematically smoothed variants of this boundary (see item 3 below). 

2.2  GFP bright spot: The bright spot comprises those pixels in a segment whose 
brightness is above the 90th percentile intensity of all pixels in the segment, with 
small, isolated areas of such pixels comprising 5% or less of the total bright spot 
area being eliminated.  As with all feature elements, the bright spot is computed 
from the GFP image of a cell and therefore does not represent the cell nucleus, 
although nuclei may often occupy the bright spot (see Figure S2). 

2.3  Edges: Edges demarcate sharp gradients of intensity.  Edges are generally 
computed using the MatLab implementation of the 'canny' algorithm using 
default parameters.  Features computed from edges (see below) provide 
information about the texture of the GFP intensity image within a segment (See 
Figure S3). 
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RhoV14_6.1: drainage area

RhoV14_6.1 (fc): drainage area

Figure S6: "Drainage areas" as defined in (1) for cell RhoV14_6.1 in grayscale image (top) 
and false color image (bottom).  Drainage areas represent regions where the intensity 
gradient points inward, such that if intensity were represented in a third dimension as 
height, water would drain from their boundaries into the region.  They are shown in the 
top outlined in blue. 

2.4  Cell centers: Many features are computed with respect to cell 'centers'.  There are 
several ways of defining these for a cell segment.  Three that are used repeatedly 
and illustrated in Figure S2 are:  

2.4.1 The GFP centroid is the geometric centroid of the binary image that 
represents the entire cell segment -- i.e., the point whose coordinates are the 
averages of all coordinates of pixels in the segment.   

2.4.2 The bright spot centroid is the geometric centroid of the GFP bright spot 
(see item 2.2 above).   

2.4.3 The center of mass of the segment is given by the mean x and y 
coordinates of pixels weighted by their intensity in the segment mass image 
(see Image Normalization above).  It differs from the GFP centroid in that 
pixel intensities as well as positions are taken into account in determining the 
center of mass, whereas only positions are considered for the GFP centroid. 
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RhoV14_6.1: half mass from boundary

reldistb=0.220

lenscale=124.9

RhoV14_6.1 (fc): half mass from boundary

lenscale=124.9

reldistb=0.220

Figure S7: The GFPHalfMassRelDistanceFromBoundary feature illustrated for cell 
RhoV14_6.1 in grayscale (top) and false color (bottom).  Pixels of distance ≤ d from the 
boundary are accumulated for increasing d until half of the intensity mass of the cell is 
captured.  The value of the feature is d / length_scale (length_scale indicated in lower left). 
The blue line illustrates a representative distance d from the boundary. The region between 
the segment boundary and the interior border at distance d (interior yellow line, top panel) 
therefore contains 1/2 of the cell intensity mass.  

2.5  Reference units and relative feature values: Many features are calculated as 
lengths or areas of geometric elements in a cell segment.  In such cases, the 
feature as directly calculated has a scale that relates to the absolute size of the 
cell segment and its information content is conflated with cell segment size.  
However, by dividing the directly calculated feature by a standard cell segment-
determined reference unit, a relative ratio is generated that reduces the 
dependency on cell size.  For features directly calculated as areas, the reference 
unit is the entire area of the cell segment.  For features directly calculated as 
lengths, the reference unit is called the length_scale.  length_scale can be set to 
a number of possible length values in the MatLab program that calculates 
features, but for all work reported here and in the article text, length_scale has 
been set to the value of the MatLab EquivDiameter variable for the segment.  
EquivDiameter is defined as the diameter of the circle that has the same area as 
the cell segment.   
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RhoV14_6.1: half mass from centroid

reldistc=0.273

lenscale=124.9

RhoV14_6.1 (fc): half mass from centroid

lenscale=124.9

reldistb=0.273

Figure S8: The GFPHalfMassRelDistanceFromGFPCentroid feature illustrated for cell 
RhoV14_6.1 in grayscale (top) and false color (bottom).  Pixels of distance ≤ d from the 
GFP centroid are accumulated for increasing d until half of the intensity mass of the cell is 
captured.  The value of the feature is d / length_scale (length_scale indicated in lower left). 
The blue line illustrates a representative distance d from the GFP centroid. The region 
within the interior partial circle around the GFP centroid (interior yellow line, top panel) 
therefore contains 1/2 of the cell intensity mass. 

For example, after calculating edges within a segment (see item 2.3 above), 
mean edge length is an example of a directly calculable feature.  As larger cell 
segments tend to have longer edges, the directly calculated absolute mean edge 
length will reflect the absolute size of the cell.  However, dividing this value by 
length_scale will now give the mean edge length relative to the linear scale of 
the cell.  This relative mean edge length will now have a reduced dependency on 
the absolute linear scale of the cell and be more descriptive of the texture of the 
GFP intensity image in the cell segment.   

In several of the figures illustrating features (e.g., Figures S2 and S3), 
length_scale is indicated graphically as a horizontal line in the lower left corner 
along with a text description indicating the value of length_scale in units of 
pixels.  In Figure S3, two examples of absolute vs. relative features are 
indicated: the total number of pixels and the mean edge length are absolute 
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RhoV14_6.1-1: Gaussian 2D intensity fit

σx=1.149

σy=0.552

ρ=-0.866

lenscale=124.9

Figure S9: Gaussian 2D fit to pixel intensities of cell segment RhoV14_6.1.  The intersection 
of the two yellow lines is the location of the mean of the best fitting Gaussian 2D surface to 
the 2D intensity profile of the cell segment.  The horizontal yellow line extends a distance 
σx from the mean on either side, while the vertical yellow line similarly extends distance 
σy.  The numerical values of σx and σy relative to length_scale (lower left) are indicated in 
the upper right, as is the ρ of the Gaussian. 

features, while the total number of pixels / total cell segment area and the mean 
edge length / length_scale are relative features. 

3 Feature variations: Above it was noted that there multiple centers may be defined in 
a cell, and also that length or area-based features can be reported as directly 
calculated 'absolute' values or as values relative to a standard reference length or 
area.  Usually, in either of these cases, when there are multiple possibilities for 
calculating a feature, all of them are computed and reported.  Thus, a large number 
of features are really slight variants of one another, differing in what centers they 
refer to and whether they are reported in absolute or relative terms.  The reason for 
reporting multiple feature variants instead of just a single one is that one of the key 
purposes for computing features was to develop image classifiers.  As it was not 
possible to know ahead of time which variant might be optimal for distinguishing 
between particular classes of images, we adopted the strategy of generating a large 
set of variants and letting the classifier training and construction logic determine the 
best set.   

In addition to multiple centers and absolute vs. relative feature values, many features 
relating to cell shape are calculated from smoothed cell segment boundaries and a set 
of feature variants is computed and reported by varying the degree of smoothing 
applied to the cell segment boundary.  Smoothing is accomplished by applying a 
Gaussian filter to the Fourier frequency spectrum of the boundary as per (18) 
(section 19.2.1.2, pp.490-1), so that high frequency 'noise' in the boundary 
eliminated.  The σ of the Gaussian filter controls the degree of smoothing, whereby a 
large σ only yields a small degree of smoothing while a small σ yields a high degree.  
All features computed from smoothed boundaries are calculated with two degrees of 
smoothing, once with a large σ (LoSmooth) and again with a low σ (HiSmooth).  
These two degrees of smoothing provide related but different information about the 
shape of the boundary: The feature variants derived from the LoSmooth boundary 
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RhoV14_6.1 (LoSmooth): process areas
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RhoV14_6.1 (LoSmooth): process areas
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RhoV14_6.1 (LoSmooth): equivalent height ,max curvature

4.9,0.011
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15,4.1

Figure S10: Process analysis for cell segment RhoV14_6.1 for LoSmooth boundary (see text). 
Here processes are drawn on the original boundary of the cell, not the 'LoSmooth'ed 
boundaries (see Figure S4).  Green arcs on the boundary represent arcs of positive curvature 
on the 'LoSmooth'ed boundary, and red arcs represent arcs of negative curvature; each 
process extends from a green arc to the points of minimum (i.e., most negative) negative 
curvature on the abutting red arcs.  Several features associated with processes are indicated 
in the top panel: Each process has a length, base, an area, and an "equivalent height" or 
"tallness" (illustrated, conceptually by the blue double arrow).  Values in the top panel give 
the area in pixels of each process.  Values in the bottom panel give the equivalent height 
and maximum positive curvature ("sharpness") of each process.  Printed in blue (top panel) 
are the sum of all process areas, the total cell segment area, and the ratio of the two (the 
feature LoSmoothBndUndulationTotalRelativeArea). 

provide information relating to the local shape of the cell boundary -- e.g., small 
protrusions of or undulations in the boundary -- while the variants derived from the 
HiSmooth boundary describe only large-scale undulations of the boundary and 
therefore describe overall cell shape.  Specifically, LoSmooth boundaries smooth 
with σ = P/70, while the HiSmooth boundaries smooth with σ = P/200, where P = 
the number of pixels in the cell segment perimeter.  In effect, σ = P/70 effectively 
eliminates frequencies that are >= 2*σ (frequency units are 1/P = 1 cycle per P 
pixels), meaning that frequencies of 1/35 or higher (1 cycle in 35 pixels) within the 
boundary are eliminated, while σ = P/200 similarly leads to the elimination of 
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RhoV14_6.1 (HiSmooth): process areas
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Figure S11:  Process analysis for cell segment RhoV14_6.1 for HiSmooth boundary (see 
text).   The panels and information content of this figure are the same as in Figure S10 
except for their reference to HiSmooth vs. LoSmooth boundaries. 

frequencies of 1 cycle in 100 pixels or higher.  These values were set after early 
experimentation with a small number of images.  Figure S4 illustrates LoSmooth and 
HiSmooth smoothing.   

 

Feature Classes 
 
As the 154 features have multifaceted relationships to each other and to the feature 
elements from which they are computed, classifying features into categories is difficult.   
Nevertheless, for purposes of discussion, a rough-and-ready classification is presented 
here.  Each class is given a code in parentheses that is used to describe individual features 
(below). 
 
I Status/quality indicators (STATUS): This class describes the nine status and quality 

indicators that were mentioned above.  These features were not used in defining 
classifiers and are removed from normalized versions of the feature data. 
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RhoV14_6.1 (LoSmooth): best ellipse fit

X

X

RhoV14_6.1 (HiSmooth): best ellipse fit

X

X

Figure S12: Best ellipse fits to LoSmooth (top) and HiSmooth (bottom) boundaries for cell 
segment RhoV14_6.1, showing foci of the ellipses (blue Xs). 

II Basic morphology (BASIC): These features describe the basic dimensions and 
geometry of the cell segment.  Examples include Area, MajorAxisLength, and 
EquivDiameter (which, as noted in 2.5 above, is the reference length_scale used for 
computing relative linear features). GFP image intensities are not considered in any 
of these features.  Many of these features are computed from built-in MatLab image 
analysis functions. 

III Cell center offsets (CENTER):  The three cell centers described above in 2.4 are all 
based on different elements of an image.  Unlike the GFP centroid, both the GFP 
bright spot centroid and center of mass take into account GFP intensity information, 
but do so in different ways (locations of the brightest pixels vs. overall intensity 
distribution).  The relative offsets of these various centers to each other therefore 
provide information about asymmetries in the distribution and location of bright 
pixels relative to cell geometry.  See Figure S2 for illustrations of the three cell 
centers.  

IV GFP intensity distribution features (INTENSITY):  This class comprises 
straightforward features such as mean and standard deviation of GFP intensity, but 
also several features that are more specific to cell morphology.  Included among 
these are  
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IV.1 features related to fragmentation of the GFP bright spot 

IV.2  reconstructions of previously published features that describe cell morphology, 
in particular statistics for "ruffle areas", "internal drainage", "moment of inertia," 
and "multivariate kurtosis" from (1).  These were described as informative 
features relating to Rac1 phenotypes in CHO cells: Ruffle areas are small hills 
of intensity near the borders of cells, drainage areas are valleys of intensity 
internal to cells, while moment of inertia and multivariate kurtosis describe the 
overall shape of the spatial GFP distribution.  Ruffle areas are illustrated in 
Figure S5, and drainage areas are illustrated in Figure S6. The CHO cells 
analyzed in (1) were generally regular in shape compared to the cells analyzed 
in our study, so that these features may operate differently here.  For instance, 
many cells in our study exhibit long narrow processes and ruffle areas tend to 
get caught up in these processes, a situation which does not arise in the more 
regular CHO cells (see Figure S5).  

IV.3  several other experimental statistics that provide information on other aspects of 
the intensity distribution:  

IV.3.1 Half-mass statistics describe how close to a cell center or the 
segment boundary one has to get to capture 50% of the total intensity of 
the cell.  These features therefore measure overall concentration of 
intensity near the boundary or a cell center.  (See Figures S7 and S8).  

IV.3.2 Edge statistics provide information about intensity edges and 
textures within the cell segment.  (See Figure S3.) 

IV.3.3 Gaussian 2D Fit statistics are based on a fit of a 2D Gaussian 
distribution to the GFP intensity distribution.  These features provide 
general information about the shape and degree of fall-off in the intensity 
distribution.  Mathematically, the fit of intensity distributions to 
Gaussian 2D distributions is hard to perform for irregular cell shapes, 
and a large penalty is used to constrain the mean of the fit Gaussian to 
the GFP bright spot.  However, for very irregular cell shapes, even the 
large penalty term may fail to ensure a good fit. 

IV.3.4 Mutual information statistics report on the amount of mutual 
information that exists between GFP intensity and locations within the 
cell, and is intended as an easy-to-calculate measure of the 'texture' of the 
GFP intensity distribution.   

V Boundary analysis (BOUNDARY): This is a large class of features that relate to the 
analysis of the cell boundary.  As noted above (item 3 in General Aspects of 
Features), two variants of most of these features are computed, one with a high 
degree and the other with a low degree of smoothing.  Broadly speaking, most of the 
BOUNDARY features analyze the sizes, degrees of sharpness, and numbers of 
regions of positive and negative curvature in smoothed cell boundaries.  These can 
be interpreted as describing the number, size, and sharpness of processes or 
undulations of the cell boundary.  (Terminologically, a process can be thought of as 
a particularly sharp undulation, but there is no intrinsically meaningful numerical 
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threshold on size or sharpness for distinguishing them.  In practice, we tend to use 
the term 'process' for any subset of undulations defined by a chosen threshold.)  
Processes and undulations are identified with entire contiguous arcs of positive 
curvature, that are then extended into the abutting arcs of negative curvature on 
either side up until the points of largest (i.e., most negative) negative curvature.  
Several elements and parameters (below; see also Figures S10 and S11) are 
considered in the calculation of process-oriented BOUNDARY features, including:  

V.1 Process (undulation) base:  the line segment joining the endpoints of the process 
arc.  The length of this line is the computed feature. 

V.2 Process (undulation) area:  the area of the region bounded by the process arc 
and the process (undulation) base. 

V.3 Process (undulation) length: the length of the process arc. 

V.4 Sharpness: the maximum positive curvature on the process (undulation) arc 

V.5 Equivalent height or "tallness": Twice the area of the process divided by the 
length of the process base.  "Tallness" is thus computed as if the process were 
approximated by a triangle constructed on the process base. 

Several of these features are illustrated in Figures S10 and S11.  

VI Ellipticity features (ELLIPTICITY): These features are computed from the ellipse 
that best fits a smoothed boundary.  The reason for fitting ellipses to smoothed 
boundaries is to avoid distracting the ellipse fitting process by minor details of 
segment boundaries that are smoothed away.  (Several BASIC features such as 
MajorAxisLength, MinorAxisLength, and Eccentricity derive from MatLab fitting of 
ellipses to unsmoothed boundaries, so this information is also available.)  MatLab 
ellipse calculation features are supplemented by custom code to compute additional 
ellipse-related information including the location of the foci of the ellipse and the 
error of the best fit, which are used to provide additional features.  (See Figure S12.) 

Breakdown of Features into Classes 
The numbers of the 154 features in each class is given in the following table. 
 

Feature class Number 
STATUS 9 
BASIC 6 
CENTER 9 
INTENSITY 36 
ELLIPTICITY 8 
BOUNDARY 86 
Total 154 
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Definitions of Individual Features 
 
Recall that the length scale (length_scale) used for relative distance measurements is 
EquivDiameter.  The notation (L) indicates a feature adapted from (1).   
 

STATUS features 

These status / quality indicators are produced in the course of feature analysis in order to gauge the quality 
or success of various aspects of feature processing.  Although they qualify the meaning of related 
calculated features, and provide some information about the cell segment, they are not used in subsequent 
feature analysis or in the construction and training of cell segment classifiers. 

SegmentationThreshold: The threshold used in CellSegmenter to define the cell segment being analyzed. 

FractionBorderPixel: The fraction of the number of the pixels in the cell segment perimeter that are on the 
image border. 

FractionBarrierPixel: The fraction of the number of pixels in the cell segment perimeter that are on 
barriers drawn in the image by the CellSegmenter user. 

RuffleAnalysisStatus (L): A status code that describes whether ruffle analysis was successful. 

DrainageStatus (L): A status code that describes whether drainage analysis was successful. 

GFPGauss2DFitStatus: A status code that describes whether the Gaussian 2D fit to the segment intensity 
profile was successful. 

LoSmoothEllipticityStatus, HiSmoothEllipticityStatus: A status code that describes whether the best fit of 
an ellipse to the cell segment smoothed boundary was successful. 

SegmentProcessingTime: The amount of time it took in seconds to perform feature analysis for the cell 
segment. 

BASIC features 

Area: The area of (total number of pixels in) the cell segment. 

Solidity: The ratio of the area of the cell segment to the area of the convex hull of the cell segment.  
Solidity ranges between 0 and 1.  It is 1 for a perfectly convex segment and smaller than 1 for 
segments that have regions of concavity. 

Eccentricity: The eccentricity of the ellipse that best fits the cell segment boundary (as calculated by 
MatLab built-in functions on the unsmoothed cell segment boundary). 

MajorAxisLength: The length of the major axis of the ellipse that best fits the cell segment boundary (as 
calculated by MatLab built-in functions on the unsmoothed cell segment boundary). 

MinorAxisLength: The length of the minor axis of the ellipse that best fits the cell segment boundary (as 
calculated by MatLab built-in functions on the unsmoothed cell segment boundary). 

EquivDiameter: The length of the diameter of the perfect circle that had the same area as the cell segment.  
As noted above, this value is used as the length_scale of the cell segment that is used for reporting 
relative distances. 

CENTER features 

See section 2.4 in General Aspects of Features for details on center calculations.  See Figure S2 for 
illustrations of cell segment centers. 
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GFPBrightSpotGFPCentroidRelOffset: The distance between the GFP bright spot centroid and GFP 
centroid, relative to length_scale.   

GFPCentroidGFPCenterOfMassRelOffset: The distance between the GFP centroid and the cell segment 
center of mass, relative to length_scale.    

GFPBrightSpotGFPCenterOfMassRelOffset: The distance between the GFP bright spot centroid and cell 
segment center of mass, relative to length_scale. 

LoSmoothGFPCentroidClosestFocusRelOffset, HiSmoothGFPCentroidClosestFocusRelOffset: The 
distance between the GFP centroid and the closest focus of the best-fit ellipse generated for 
ELLIPTICITY features, relative to length_scale. 

LoSmoothGFPCenterOfMassClosestFocusRelOffset, HiSmoothGFPCenterOfMassClosestFocusRelOffset: 
The distance between the cell segment center of mass and the closest focus of the best-fit ellipse 
generated for ELLIPTICITY features, relative to length_scale. 

LoSmoothGFPBrightSpotClosestFocusRelOffset, HiSmoothGFPBrightSpotClosestFocusRelOffset: The 
distance between the GFP bright spot centroid and the closest focus of the best-fit ellipse generated 
for ELLIPTICITY features, relative to length_scale. 

INTENSITY features 

Figures S2, S3, S5, S6, S7, and S8 illustrate the intensity profile of a cell segment along with several 
features computed from the intensity profile and distribution. 

MeanIntensity: The mean of the pixel intensities for all pixels within the cell segment.  (Pixel intensities are 
normalized to a maximum of 1 over the entire image containing the segment.) 

StdIntensity: The standard deviation of the pixel intensities for all pixels within the cell segment. 

90thPercentileIntensity: The 90th percentile intensity of all pixels within the cell segment.  Note that this is 
the intensity threshold used to define the cell segment's GFP bright spot. 

GFPBrightSpotMajorSegments: The number of distinct regions within the cell segment that consist of 
pixels exceeding the GFP bright spot intensity threshold.  As described above, small bright spot 
segments are eliminated when defining the bright spot, and this feature counts only those bright spot 
segments that survive this clean-up process (hence the phrase "MajorSegment" within the feature 
name).  It is possible (but unlikely) that no segments could remain after this clean-up. 

GFPBrightSpotTotalArea: The total area of (total number of pixels in) the GFP bright spot, no matter how 
many segments it may contain.  Since the bright spot is defined by the 90th percentile intensity 
threshold, this value should be close to 10% of the total segment area.  However, the clean-up of small 
bright spot segments and the discreteness of the number of pixels in the cell may lead to deviations 
from this value. 

GFPBrightSpotMajorSegmentAreaMean: The mean of the areas of the 'major segments' of the GFP bright 
spot as described in GFPBrightSpotMajorSegments above, after clean-up of small bright spot areas. 

GFPBrightSpotMajorSegmentAreaCV: The coefficient of variation of the areas of the 'major segments' of 
the GFP bright spot, after clean-up of small bright spot areas.  This feature is intended to provide 
information on the degree of variation in size of dispersed bright spot major areas. 

GFPBrightSpotMajorSegmentMaxMinSeparation: If there are multiple GFP bright spot major segments, 
each has a minimum distance to the others (i.e., the shortest distance between any pixel in one 
segment to the pixels in all other segments).  This feature reports the maximum of these minimum 
distances relative to length_scale, and therefore provides information about the degree of dispersion 
of bright spot major segments when there is more than one. 

GFPCenterOfMassGFPMomentOfInertia (L): The moment of inertia of the GFP intensity distribution 
computed with reference to the GFP center of mass.  The formula for moment of inertia is Σmi⋅ri

2 
where i ranges over all pixels in the cell segment, mi is the 'mass' at the pixel (see section 2.4 in 
General Aspects of Features for details on center of mass calculations), and ri is the Euclidean 
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distance between the pixel and the center of mass.  This feature was not normalized to length_scale 
because there is no indication of any such normalization in (1). 

GFPCentroidGFPMomentOfInertia (L): The moment of inertia of the GFP intensity distribution computed 
with reference to the GFP centroid.  See GFPCenterOfMassGFPMomentOfInertia for other details on 
this calculation. 

GFPBrightSpotGFPMomentOfInertia (L): The moment of inertia of the GFP intensity distribution 
computed with reference to the GFP bright spot centroid.  See 
GFPCenterOfMassGFPMomentOfInertia for other details on this calculation. 

GFPMultivariateKurtosis (L): The multivariate kurtosis of the intensity distribution, computed according 

to formula 3.5 of (19) (cited by (1)), which calculates it as .   Here 

X is the random variable that describes locations (x,y) of cell mass, μ is the mean E(X) of X (equal to 
the center of mass), and Σ is the covariance matrix of X.  See the section Image Normalization for 
details on the segment mass image that is used to compute this value. 

⎟
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GFPHalfMassRelDistanceFromBoundary: See section IV.3 of Feature Classes above for general 
information on half-mass features.  This feature is illustrated in Figure S7. 

GFPHalfMassRelDistanceFromGFPCentroid: See section IV.3 of Feature Classes above for general 
information on half-mass features.  This feature is illustrated in Figure S8. 

GFPHalfMassRelDistanceFromGFPCenterOfMass: A variant of 
GFPHalfMassRelDistanceFromGFPCentroid that uses the GFP center of mass instead of the GFP 
centroid as the center of for computing half-mass distance.  See section IV.3 of Feature Classes 
above for general information on half-mass features.  The GFP centroid version of the feature is 
illustrated in Figure S8. 

GFPHalfMassRelDistanceFromGFPBrightSpotCentroid: A variant of 
GFPHalfMassRelDistanceFromGFPCentroid that uses the GFP bright spot centroid instead of the 
GFP centroid as the center of for computing half-mass distance.  See section IV.3 of Feature Classes 
above for general information on half-mass features.  The GFP centroid version of the feature is 
illustrated in Figure S8. 

RuffleArea (L): The total number of pixels in "ruffle areas", which are small 'hills' of intensity that are close 
to the cell boundary. 

RufflePixSum (L): The total of the intensity of pixels in the "ruffle areas." 

RuffleVolume (L): Viewing intensity values as defining a surface above the 2D planar region of the cell 
segment, and focusing on a single ruffle area, the amount of volume is calculated between the ruffle 
area surface and the horizontal plane that is set at the highest intensity on the border between the 
ruffle area and cell interior.  The feature is the sum of these volumes over all ruffle areas. 

DrainageArea (L): The total number of pixels in "internal drainage areas," which are small 'depressions' of 
intensity within the cell segment interior. 

DrainagePixSum (L): The total of the intensity of pixels in the "drainage areas." 

GFPEdgeNumber: The number of edges inside of the cell segment.  See section 2.3 of General Aspects of 
Features for information on computation of edges, and Figure S3 for an illustration of edges and edge 
feature calculations.    

GFPEdgeTotalPixels: The total number of pixels in all edges inside of the cell segment.  See section 2.3 of 
General Aspects of Features for information on computation of edges, and Figure S3 for an 
illustration of edges and edge feature calculations. 

GFPEdgePixelDensity: The total number of pixels in all edges inside of the cell segment, divided by the 
cell segment area (i.e., the total number of pixels in the cell segment).  See section 2.3 of General 
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Aspects of Features for information on computation of edges, and Figure S3 for an illustration of 
edges and edge feature calculations. 

GFPEdgeMeanLength: The mean number of pixels in the edges within the cell segment.  See section 2.3 of 
General Aspects of Features for information on computation of edges, and Figure S3 for an 
illustration of edges and edge feature calculations. 

GFPEdgeMeanRelativeLength: The mean number of pixels in the edges within the cell segment, divided 
by length_scale.  See section 2.3 of General Aspects of Features for information on computation of 
edges, and Figure S3 for an illustration of edges and edge feature calculations. 

GFPIntensityLocationMutualInformation_5_15_15, GFPIntensityLocationMutualInformation_8_15_24, 
GFPIntensityLocationMutualInformation_5_20_15, 
GFPIntensityLocationMutualInformation_8_20_24: Mutual information between locations and 
intensity is computed by overlaying a grid on the cell with a specific grid element length 
(ElementSize).  Grid elements that contain fewer than a certain number of segment pixels are 
excluded (MinPixels).  Probability distributions for the intensity distribution over the entire cell 
segment, and for each grid element under consideration, are constructed from histograms based on a 
range of frequency bins (IntensityMeshSize).  Using this scheme, mutual information between 
locations and intensities is computed by the standard formula I(I;L)=H(X) - H(X|L), where X = 
intensity distribution, L = location distribution as given by intensities (cell 'mass', as above) where H 
= entropy.  The feature named GFPIntensityLocationMutualInformation_X_Y_Z  is calculated with an 
IntensityMeshSize = X, ElementSize = Y, and MinPixels = Z. 

GFPGauss2DFitMeanResidual: See section IV.3 of Feature Classes for information on GFP Gaussian 2D 
fit features, and Figure S9 for an illustration.  This feature is the total residual of the 2D Gaussian fit 
divided by the number of pixels in the cell segment, a measure of how well the cell intensity profile is 
represented by a Gaussian.  Note that the fit of intensities to the Gaussian is performed in log space.  
Low values indicate a good fit, while higher values indicate fits that are not as good. 

GFPGauss2DFitCorrelation: See section IV.3 of Feature Classes for information on GFP Gaussian 2D fit 
features, and Figure S9 for an illustration. This feature is reported as the Gaussian ρ parameter (i.e., 
correlation) of the best-fit 2D Gaussian to the cell's intensity profile. 

GFPGauss2DFitRelativeSigmaRow: See section IV.3 of Feature Classes for information on GFP 
Gaussian 2D fit features, and Figure S9 for an illustration.  Values reported for this feature are in 
error!! This feature is supposed to present the σy parameter (standard deviation in the row (y) 
direction) of the best-fit 2D Gaussian to the cell's intensity profile, relative to length_scale.  However 
due to a coding error, the values accumulated for this feature for all cell segments analyzed in this 
study are actually the μy parameters (means in the row (y) direction), rather than the σy, relative to 
length_scale. 

GFPGauss2DFitRelativeSigmaCol: See section IV.3 of Feature Classes for information on GFP Gaussian 
2D fit features, and Figure S9 for an illustration.  This feature presents the σx parameter (standard 
deviation in the column (x) direction) of the best-fit 2D Gaussian to the cell's intensity profile, relative 
to length_scale.   

GFPGauss2DFitRelativeOffsetMeanFromSegCentroid: The distance between the location of the mean of 
the best-fit 2D Gaussian and the GFP centroid of the cell, relative to length_scale.   

GFPGauss2DFitRelativeOffsetMeanFromBrightSpotCentroid: The distance between the location of the 
mean of the best-fit 2D Gaussian and the GFP bright spot centroid of the cell, relative to 
length_scale. 

ELLIPTICITY features 

See section IV of Feature Classes for general information on ELLIPTICITY features.  Best-fit ellipses to 
smoothed boundaries are illustrated in Figure S12. 

LoSmoothEccentricity, HiSmoothEccentricity: The eccentricity of the ellipse that best fits the smoothed 
boundary, as computed by built-in MatLab functions. 
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LoSmoothMajorAxisLength, HiSmoothMajorAxisLength: The major axis length of the ellipse that best fits 
the smoothed boundary, as computed by built-in MatLab functions. 

LoSmoothMinorAxisLength, HiSmoothMinorAxisLength: The minor axis length of the ellipse that best fits 
the smoothed boundary, as computed by built-in MatLab functions. 

LoSmoothEllipticity, HiSmoothEllipticity: The residual of the best-fit ellipse divided by the number of 
pixels in the smoothed cell boundary that was fit.  Computation of these features requires additional 
calculations beyond MatLab built-in functions, which do not return ellipse foci or fit residuals; 
however the MatLab-based values of eccentricity, major axis length, minor axis length, and 
orientation, are used as input to this process.  (A variant algorithm which computed these values ab 
initio worked well but sometimes gave results that differed greatly from MatLab-based calculations.  
While these seemed to be genuinely ambiguous cases, the ab initio calculations were avoided so as to 
preserve general consistency with MatLab-based calculations.)  This feature gives a measure of the 
degree to which the smoothed boundary is elliptical.  Low values indicate a good fit, while higher 
values indicate fits that are not as good. 

BOUNDARY features 

See section V of Feature Classes and section 3 of General Aspects of Features for general information 
on BOUNDARY features.  Figure S10 and S11 present illustrations of BOUNDARY process analysis. 

Many BOUNDARY features derive from computed curvatures of points on the boundary.  Curvatures (κ) 

are computed using the standard formula 2/322 )( yx
xyyx

+

⋅−⋅
=κ , where first and second derivatives of x 

and y are themselves computed from the smoothed, parameterized boundary. 

LoSmoothBndNormIntegratedAbsAngle, HiSmoothBndNormIntegratedAbsAngle: The integral of the 
absolute value of the increment of tangent angle dθ over the parameterized smoothed cell boundary, 
taken over the entire boundary, divided by the same value computed for a perfect circle of the same 
perimeter as the cell boundary.  dθ is computed during curvature calculations using the formula 

22 yx
xyyxd

+

⋅−⋅
=θ .  In theory, dθ is constant along a perfect circle, while, for irregular boundaries, 

dθ alternates between regions of positive and then negative value as one moves alternately through 
boundary regions with positive and negative curvature; however, (again, in theory), the integral of dθ 
over a cell boundary (∫dθ) should always equal 2π no matter how irregular the boundary because the 
positive and negative contributions to ∫dθ accumulated over these regions should cancel out, with the 
final value of ∫dθ ultimately representing only a net sweep of the tangent through 360° over the entire 
boundary.  By contrast, positive and negative values do not cancel out in this way when the absolute 
value of dθ is integrated (∫|dθ|), and ∫|dθ| should increase to larger and larger values with increasingly 
convoluted boundaries.  In practice, calculations of both ∫dθ and ∫|dθ| are heavily affected by the 
discreteness of images, the effectiveness and degree of smoothing, and the size of the boundary.  To 
partially correct these artifacts, the ∫|dθ| computed for a smoothed cell boundary is normalized by 
dividing it by the value of ∫|dθ| computed for a perfect circle with the same perimeter as the cell 
boundary that has been smoothed in the same way as the cell boundary, and this ratio is reported as 
the feature.  A value near 1 indicates a simple cell boundary, while values > 1 indicate boundaries that 
are increasingly complicated.  We thank Steve Altschuler for discussions regarding this feature. 

LoSmoothBndUndulationCount, HiSmoothBndUndulationCount: The total number of undulations (regions 
of positive curvature) in the smoothed cell boundary. 

LoSmoothBndUndulationTotalRelativeArea, HiSmoothBndUndulationTotalRelativeArea: The total area 
contained in all undulations of the smoothed cell boundary, divided by the total area of the cell 
segment.  See Figures S10 and S11 for illustrations. 

LoSmoothBndProcessesGE0.5, HiSmoothBndProcessesGE0.5: The number of undulations having a 
maximum positive curvature of at least 0.5. 
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LoSmoothBndProcessesGE1, HiSmoothBndProcessesGE1: The number of undulations having a maximum 
positive curvature of at least 1. 

LoSmoothBndCurvatureSharpestProcess, HiSmoothBndCurvatureSharpestProcess: The maximum positive 
curvature found on the smoothed cell boundary, indicating the sharpest process where sharpness is 
defined by curvature. 

LoSmoothAreaSharpestProcess, HiSmoothAreaSharpestProcess: The area of the process with the 
maximum positive curvature found on the smoothed cell boundary. 

LoSmoothRelativeAreaSharpestProcess, HiSmoothRelativeAreaSharpestProcess: The area of the process 
with the maximum positive curvature found on the smoothed cell boundary, divided by the total area 
of the cell segment. 

LoSmoothBndCurvature2ndSharpestProcess, HiSmoothBndCurvature2ndSharpestProcess: The maximum 
positive curvature of the process with the second highest positive curvature found on the smoothed 
cell boundary, indicating the second sharpest process where sharpness is defined by curvature alone.  
Note that all boundaries will have at least one region of positive curvature, and therefore a sharpest 
process, but not all boundaries will have two.  A value of 0 for this feature indicates that there is no 
second sharpest process. 

LoSmoothArea2ndSharpestProcess, HiSmoothArea2ndSharpestProcess: The area of the second sharpest 
process found on the smoothed cell boundary, where sharpness is defined by curvature.  A value of 0 
for this feature indicates that there is no second sharpest process. 

LoSmoothRelativeArea2ndSharpestProcess, HiSmoothRelativeArea2ndSharpestProcess: The area of the 
second sharpest process found on the smoothed cell boundary, divided by the total area of the cell 
segment, where sharpness is defined by curvature. A value of 0 for this feature indicates that there is 
no second sharpest process. 

LoSmoothBndAngleSharpestProcessesGFPCentroid, HiSmoothBndAngleSharpestProcessesGFPCentroid: 
Where there is both a sharpest and a second sharpest process, the angle (in degrees) subtended by the 
points on the unsmoothed boundaries corresponding to the maximum curvature points on the 
smoothed boundary processes, relative to the cell segment GFP centroid.  Bipolar cells have a value 
of this feature that is close to 180. A value of 0 for this feature indicates that there is no second 
sharpest process. 

LoSmoothBndAngleSharpestProcessesGFPCenterOfMass, 
HiSmoothBndAngleSharpestProcessesGFPCenterOfMass: A feature variant of 
LoSmoothBndAngleSharpestProcessesGFPCentroid (and its HiSmooth variant) where the cell center 
used for measuring the subtended angle is the GFP center of mass. 

LoSmoothBndAngleSharpestProcessesGFPBrightSpotCentroid, 
HiSmoothBndAngleSharpestProcessesGFPBrightSpotCentroid: A feature variant of 
LoSmoothBndAngleSharpestProcessesGFPCentroid (and its HiSmooth variant) where the cell center 
used for measuring the subtended angle is the GFP bright spot centroid. 

LoSmoothHeightTallestProcess, HiSmoothHeightTallestProcess: The 'equivalent height' or 'tallness' of the 
tallest undulation on the smoothed cell boundary. 

LoSmoothRelativeHeightTallestProcess, HiSmoothRelativeHeightTallestProcess: The 'equivalent height' or 
'tallness' of the tallest undulation on the smoothed cell boundary, relative to length_scale 

LoSmoothAreaTallestProcess, HiSmoothAreaTallestProcess: The area of the tallest undulation on the 
smoothed cell boundary. 

LoSmoothRelativeAreaTallestProcess, HiSmoothRelativeAreaTallestProcess: The area of the tallest 
undulation on the smoothed cell boundary, relative to total cell segment area. 

LoSmoothBaseTallestProcess, HiSmoothBaseTallestProcess: The base of the tallest undulation on the 
smoothed cell boundary. 
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LoSmoothRelativeBaseTallestProcess, HiSmoothRelativeBaseTallestProcess: The base of the tallest 
undulation on the smoothed cell boundary, relative to length_scale. 

LoSmoothHeight2ndTallestProcess, HiSmoothHeight2ndTallestProcess: The 'equivalent height' or 'tallness' 
of the second tallest undulation on the smoothed cell boundary.  Note that if there is only one arc of 
positive curvature on the boundary, there is no second tallest undulation and the value of this feature 
is 0. 

LoSmoothRelativeHeight2ndTallestProcess, HiSmoothRelativeHeight2ndTallestProcess: The 'equivalent 
height' or 'tallness' of the second tallest undulation on the smoothed cell boundary, relative to 
length_scale.  Note that if there is only one arc of positive curvature on the boundary, there is no 
second tallest undulation and the value of this feature is 0. 

LoSmoothArea2ndTallestProcess, HiSmoothArea2ndTallestProcess: The area of the second tallest 
undulation on the smoothed cell boundary.  Note that if there is only one arc of positive curvature on 
the boundary, there is no second tallest undulation and the value of this feature is 0. 

LoSmoothRelativeArea2ndTallestProcess, HiSmoothRelativeArea2ndTallestProcess: The area of the 
second tallest undulation on the smoothed cell boundary, relative to total cell segment area. Note that 
if there is only one arc of positive curvature on the boundary, there is no second tallest undulation and 
the value of this feature is 0. 

LoSmoothBase2ndTallestProcess, HiSmoothBase2ndTallestProcess: The base of the second tallest 
undulation on the smoothed cell boundary. Note that if there is only one arc of positive curvature on 
the boundary, there is no second tallest undulation and the value of this feature is 0. 

LoSmoothRelativeBase2ndTallestProcess, HiSmoothRelativeBase2ndTallestProcess: The base of the 
second tallest undulation on the smoothed cell boundary, relative to length_scale.  Note that if there is 
only one arc of positive curvature on the boundary, there is no second tallest undulation and the value 
of this feature is 0. 

LoSmoothBndAngleTallestProcessesGFPCentroid, HiSmoothBndAngleTallestProcessesGFPCentroid: 
When there are two tallest processes, the angle (in degrees) subtended by the points on the 
unsmoothed cell boundaries that correspond to the points of maximum positive curvature of each of 
these two tallest smoothed boundary processes, relative to the cell segment's GFP centroid. 

LoSmoothBndAngleTallestProcessesGFPCenterOfMass, 
HiSmoothBndAngleTallestProcessesGFPCenterOfMass: A feature variant of 
LoSmoothBndAngleTallestProcessesGFPCentroid (and its HiSmooth variant) where the cell center 
used for measuring the subtended angle is the GFP center of mass.  

LoSmoothBndAngleTallestProcessesGFPBrightSpotCentroid, 
HiSmoothBndAngleTallestProcessesGFPBrightSpotCentroid: A feature variant of 
LoSmoothBndAngleTallestProcessesGFPCentroid (and its HiSmooth variant) where the cell center 
used for measuring the subtended angle is the GFP bright spot centroid.  

LoSmoothBndLargestAreaForProcessGE0.5, HiSmoothBndLargestAreaForProcessGE0.5: The largest 
area of any process that has a maximum positive curvature >= 0.5.  

LoSmoothBndLargestRelativeAreaForProcessGE0.5, HiSmoothBndLargestRelativeAreaForProcessGE0.5: 
The area of the process identified in LoSmoothBndLargestRelativeAreaForProcessGE0.5 (and its 
HiSmooth variant), divided by the cell segment's total area. 

LoSmoothBndSecondLargestAreaForProcessGE0.5, HiSmoothBndSecondLargestAreaForProcessGE0.5: 
The area of the process with the second largest area, for all processes with a maximum positive 
curvature >= 0.5.  If there is no such process, the value of this feature is 0. 

LoSmoothBndSecondLargestRelativeAreaForProcessGE0.5, 
HiSmoothBndSecondLargestRelativeAreaForProcessGE0.5: The area of the process identified in 
LoSmoothBndSecondLargestAreaForProcessGE0.5 (and its HiSmooth variant), divided by the cell 
segment's total area. 
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LoSmoothBndAngleLargestProcessesGE0.5GFPCentroid, 
HiSmoothBndAngleLargestProcessesGE0.5GFPCentroid: When there are two processes with 
maximum positive curvature >= 0.5, the angle (in degrees) subtended by the points on the 
unsmoothed cell boundaries that correspond to the points of maximum positive curvature of each of 
these two largest smoothed boundary processes, relative to the cell segment's GFP centroid.  Bipolar 
cells have a value of this feature that is close to 180. A value of 0 for this feature indicates that there is 
no second largest process. 

LoSmoothBndAngleLargestProcessesGE0.5GFPCenterOfMass, 
HiSmoothBndAngleLargestProcessesGE0.5GFPCenterOfMass: A feature variant of 
LoSmoothBndAngleLargestProcessesGE0.5GFPCentroid (and its HiSmooth variant) where the cell 
center used for measuring the subtended angle is the GFP center of mass. 

LoSmoothBndAngleLargestProcessesGE0.5GFPBrightSpotCentroid, 
HiSmoothBndAngleLargestProcessesGE0.5GFPBrightSpotCentroid: A feature variant of 
LoSmoothBndAngleLargestProcessesGE0.5GFPCentroid (and its HiSmooth variant) where the cell 
center used for measuring the subtended angle is the GFP bright spot centroid. 

LoSmoothBndLargestAreaForProcessGE1, HiSmoothBndLargestAreaForProcessGE1: The largest area of 
any process that has a maximum positive curvature >= 1.  

LoSmoothBndLargestRelativeAreaForProcessGE1, HiSmoothBndLargestRelativeAreaForProcessGE1: 
The area of the process identified in LoSmoothBndLargestRelativeAreaForProcessGE1 (and its 
HiSmooth variant), divided by the cell segment's total area. 

LoSmoothBndSecondLargestAreaForProcessGE1, HiSmoothBndSecondLargestAreaForProcessGE1: The 
area of the process with the second largest area, for all processes with a maximum positive curvature 
>= 1.  If there is no such process, the value of this feature is 0. 

LoSmoothBndSecondLargestRelativeAreaForProcessGE1, 
HiSmoothBndSecondLargestRelativeAreaForProcessGE1: The area of the process identified in 
LoSmoothBndSecondLargestAreaForProcessGE1 (and its HiSmooth variant), divided by the cell 
segment's total area. 

LoSmoothBndAngleLargestProcessesGE1GFPCentroid, 
HiSmoothBndAngleLargestProcessesGE1GFPCentroid: When there are two processes with 
maximum positive curvature >= 1, the angle (in degrees) subtended by the points on the unsmoothed 
cell boundaries that correspond to the points of maximum positive curvature of each of these two 
largest smoothed boundary processes, relative to the cell segment's GFP centroid.  Bipolar cells have 
a value of this feature that is close to 180. A value of 0 for this feature indicates that there is no second 
largest process. 

LoSmoothBndAngleLargestProcessesGE1GFPCenterOfMass, 
HiSmoothBndAngleLargestProcessesGE1GFPCenterOfMass: A feature variant of 
LoSmoothBndAngleLargestProcessesGE1GFPCentroid (and its HiSmooth variant) where the cell 
center used for measuring subtended angle is the GFP center of mass. 

LoSmoothBndAngleLargestProcessesGE1GFPBrightSpotCentroid, 
HiSmoothBndAngleLargestProcessesGE1GFPBrightSpotCentroid: A feature variant of 
LoSmoothBndAngleLargestProcessesGE1GFPCentroid (and its HiSmooth variant) where the cell 
center used for measuring subtended angle is the GFP bright spot centroid. 

 

Quantitative Morphological Analysis 

Fisher Linear Discriminants (FLDs) 
Initial work on classifier development employed a set of 502 cell segments comprising 11 
TCs (including the GFP controls) and used Fisher Linear Discriminants.  The 
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composition of this set of cell segments is indicated in Table S3.  It included RNAi 
knockdowns of Rac1, Rho1, and Cdc42 GTPases, as well as overexpression of activated 
forms of Rac1, Rho1, and the RhoGEF SIF1. 
 
t-tests: We first computed t-test P values comparing the means of each feature in one of 
these TCs vs. the value of that feature in all other TCs combined (TC vs ~TC) and found 
that some individual features were strongly informative for some TCs.  Indeed, 120 out of 
1671 TC vs ~TC comparisons for single features were significant with P values < 
.05/1671.  A TC where a N-terminally truncated form of SIF was overexpressed had the 8 
most significant TC vs. ~TC P values for single features, with the DrainageArea feature 
exhibiting the lowest value of 1.2e-68. DrainageArea is a feature found to be informative 
for lamellipodia formation in a previous study (1).  This finding is remarkably consistent 
with previous studies which have demonstrated that overexpression of N-terminally 
truncated forms of SIF stimulate lamellipodial protrusions (10). Moreover, 10 of the 11 
TCs had at least one feature by which the t-test of the class against all other classes was 
significant at P<.05/1671.   
 
Treatment Class (TC) N InFeat Sens Spec OutFeat Comment 
ΔN-SIF 36 36 86 98 12 constitutively active SIF1 
RhoGEF3_RNAi 26 42 73 98 8 RhoGEF3 knockdown 
Gfp1 145 25 68 85 8 GFP controls 
RhoV14 56 35 61 97 6 constitutively active Rho1 
Rac1_Rac2_MTL_RNAi 21 10 24 100 3 triple knockdown 
RacV12 45 26 24 98 6 constitutively active Rac1 
Rho1_RNAi 33 21 9 100 7 Rho1 knockdown 
control1 66 9 2 100 1 miscellaneous set of treatments 
Dia_RNAi 19 8 0 100 1 Dia knockdown 
Cdc42_RNAi 27     Cdc42 knockdown 
Rac1_RNAi 28     Rac1 knockdown 
TOTAL 502      
 
Table S3: Composition of set of cell segments used for initial classifier development and results of best 

Fisher linear discriminant (FLD) for each TC vs. ~TC derived as described in the text.  N = number of 
cell segments in TC. InFeat = number of features after feature reduction (see text) considered by feature 
selection and discriminant construction logic.  Sens = sensitivity of FLD (%) estimated from leave-one-
out cross validation.  Spec = specificity of FLD (%) estimated from leave-one-out cross-validation.  
OutFeat = number of features from InFeat set that were used in the best FLD.  TCs are ordered from 
largest to least Sens.  FLDs were constructed only for the first 9 of the 11 TCs in the 502 cell segments 
used for initial classifier development. 

 
FLD construction: While t-tests showed that the means of some features were 
significantly different for a TC vs. all other TCs aggregated, well separated means do not 
imply well separated distributions.  We therefore explored whether these features could 
be the basis of classifiers for predicting membership in a TC, starting with simple FLDs 
based on multiple informative features.  Logic for building and evaluating discriminants 
was coded in MatLab and combined several processing steps including feature selection 
and leave-one-out cross-validation.  Linear discriminants were developed to distinguish 
TC from ~TC for each of 9 of the TCs in the set of 502 cell segments. 
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Feature reduction:  The feature set contains many sets of minor variants and contains 
other pairs of features which are highly correlated.  To reduce redundancy, we first 
clustered features using complete linkage hierarchical clustering with a distance function 
of 1-abs(ρ), where ρ = the Pearson correlation coefficient for a pair of features over all 
502 cell segments, and using a distance cutoff of 0.2 to define clusters, resulting in 82 
clusters (including many singletons).  Inspection verified that minor feature variants fell 
into the same clusters.  We then assembled a reduced list of features for linear 
discriminant construction by selecting the feature from each cluster that had the lowest t-
test P-value for TC vs. ~TC t-tests among all the features in the cluster, only retaining 
those whose P-value was less than a specified significance cutoff (.001 for all TCs except 
ΔN-SIF, for which it was .0001).  This resulted in between 8 and 42 features available for 
FLD construction (see InFeat, Table S3). 
 
FLD coefficient and threshold calculations:  For a given non-singleton subset of the 
InFeat (Table S3) input features, FLD coefficients were computed in the usual way as 
FLDcoeff = (CTC+C~TC)-1⋅(MTC-M~TC), where Mk = the column vector of feature means 
for the class k (k = TC or ~TC), and Ck = the covariance matrix of the feature values 
over the N cell segments in TC (for k = TC), and over the 502-N cell segments in ~TC 
(for k = ~TC).  Any cell segment s with feature values fs can now be associated with a 
scalar value (FLDcoeff )'⋅ fs  and two classifiers constructed with any given threshold t, 
whereby for the first (FLDcoeff )'⋅ fs  < t  assigns s to TC and (FLDcoeff )'⋅ fs  ≥ t assigns s to 
~TC, whereas for the second the class assignments are reversed, i.e., (FLDcoeff )'⋅ fs  < t  
assigns s to ~TC and (FLDcoeff )'⋅ fs  ≥ t assigns s to TC.  Finally, the value of the FLD 
threshold t and class assignment was chosen to minimize the average of the false positive 
and false negative error rates. 
 
Feature selection:  FLD construction was combined with feature selection using the 
Sequential Forward Floating Selection algorithm of (20). In this algorithm, one starts 
with a set comprising a single feature and proceeds through an unspecified number of 
steps each of which adds the feature outside of the current feature set that best improves 
performance, or subtracts the feature in the set that least degrades performance.  The 
algorithm maintains a list of feature sets with 1, 2, 3, … features, and as it moves through 
addition and subtraction steps, it updates this list if a newly extended or subtracted set has 
better performance than the one currently in its list.  When the algorithm ceases, the best 
performing set out of its list of feature sets with 1, 2, 3, … features defines the feature 
selection used for subsequent use of the classifier. 
 
In our implementation, the singleton set used to start the algorithm consists of the feature 
with the best (lowest) TC vs. ~TC P-value, and the performance of the current set of 
features is measured by the average of the false positive and false negative error rates 
obtained from leave-one-out FLD construction and evaluation.  This means that, to gauge 
performance of a feature set during any one iteration of the algorithm, 502 FLDs were 
constructed as described above with the current feature set -- one for each set of 501 cell 
segments excepting a hold-out case -- the hold-out cases are classified using their 
associated leave-one-out FLDs, and a false negative rate (FNR) and false positive error 
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rates (FPR) is estimated based on these 502 classifications.  The performance score used 
to evaluate algorithm iterations is the average of FPR and FNR.   
 
The rationale for evaluating performance at each step using leave-one-out error is that, 
although very computationally expensive, this arrangement helps pick a feature set that 
has the best generalization properties rather than one that optimizes training set error, 
since errors and successes are judged for hold-out cases that are not used to construct the 
classifier used to evaluate them.  The feature set constructed for an FLD is therefore also 
one in which generalization error is well controlled.  Nevertheless, this strategy is limited 
not only by the limited search of feature sets supported by the algorithm of (20), but by 
the possibility of internal correlations within the TC cell segment sets, in which many cell 
segments are obtained from single wells.   
 
The Table S3 OutFeat column presents the number of features selected by this algorithm 
for each of the 9 TCs for which FLDs were constructed. 
 
Sensitivity and specificity:  Sensitivity and specificity as given in Table S3 were also 
computed on the basis of leave-one-out cross-validations.  E.g., false negative error for 
the ΔN-SIF FLD in Table S3 was evaluated as the FNR based on classifications in which 
one of the 36 ΔN-SIF TC cell segments was held out and classified from an FLD trained 
on the remaining 501 cell segments.  Similarly specificity was computed from the FPR 
based on 466 ~ΔN-SIF hold-out FLDs and classifications.  
 
 

 
average  

FNR and FPR 
 error rate 

simpliciter 
Treatment Class (TC) Sens Spec OutFeat  Sens Spec OutFeat
ΔN-SIF 86 98 12  75 99 9 
RhoGEF3 RNAi 73 98 8  65 67 4 
Gfp1 68 85 8  50 51 2 
RhoV14 61 97 6  64 65 7 
 
Table S4: Comparison of sensitivity and specificity of Fisher Linear Discriminants constructed when error 

is computed as the average of false negative (FNR) and false positive error (FPR) (left) vs. error 
simpliciter in which negative and positive error is not distinguished (right).  In general (but not always), 
use of error simpliciter results in reduced sensitivity.  See text for details. 

 
A note on error evaluation: We note that the choice of evaluating performance by 
averaging FPR and FNR has the effect of compensating for the inequality between the 
sizes of the positive and negative training sets -- e.g. 36 positive vs. 466 negative cases 
for ΔN-SIF.  We found that if performance were judged on error rate simpliciter -- i.e., 
the total fraction of misclassifications regardless of whether the misclassification were for 
a positive or negative case -- the resulting classifiers and feature sets tended to be ones in 
which specificity was emphasized at the expense of sensitivity, presumably because when 
negative cases dominate, false negative error dominates the total error.   This is seen in 
Table S4, which compares results for the first four TCs and FLDs in Table S3.  Although, 
statistically, use of error rate simpliciter is frequently a valid strategy, it resulted here in 
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classifiers that tended to predict very few positive cases, and for that reason we employed 
the average of FPR and FNR.  As can be seen from Table S4, however, this failed to 
produce sensitive FLDs for several TCs, whose sensitivities remained very low while 
their specificities were near 100%. 
 
Principal Component Analysis (PCA):  We also explored use of PCA for analyzing the 
discriminative power of multiple features.  For instance, Figure S13 plots ΔN-SIF vs. 
~ΔN-SIF samples using the first three principal components based on the 12 features 
selected for the optimal ΔN-SIF vs, ~ΔN-SIF FLD above.   
 
In general we did not find PCA particularly informative with these data.  A key issue is 
that the linear combinations of features that represent principal components could not be 
easily interpreted compared to the original features presented clearly meaningful 
properties of cell images.  Another issue is that PCA, which is based on variance and 
covariance calculations, could be affected by outliers (e.g., note that there are several 
points on the extreme left in Figure S13).  
 
 

 
Figure S13:  ΔN-SIF (blue circles) and ~ΔN-SIF (red circles) cell segments as plotted for the first three 

principal components for the 12 features for the optimal ΔN-SIF vs. ~ΔN-SIF FLD (see text).  The blue 
circles are mainly on the left. 

 
Fisher Linear Discriminants -- Conclusions: Many instances were found in which 
individual features generated by automated image analysis for stochastically labeled cells 
were highly informative concerning TC membership, as judged by t-tests against the 
mean feature values of these TC.  Modest success was achieved in classifying some TCs 
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against the rest by using multiple features in simple FLDs.   The best classifier, for the 
ΔN-SIF TC, achieved 86% sensitivity and 98% specificity.  Effective FLDs could not be 
constructed for several TCs, however, and these tended to have very low sensitivities and 
close to perfect specificities. In some cases, this may have been due to the training set 
itself, as this contained instances of TCs that were probably very similar and would 
therefore be difficult to distinguish using FLDs: For example, the TCs Rac1_RNAi and 
Rac1_Rac2_MTL_RNAi both involve use of the same Rac1 dsRNA which generated 
cells with similar phenotypes that would have appeared as both positive and negative 
cases during the construction of the FLD for Rac1_Rac2_MIT_RNAi vs. 
~Rac1_Rac2_MTL_RNAi.   
 
Another observation is that the November 2005 GFP TC (GFP control set) yielded a 
relatively poor FLD with only 68% sensitivity.  A similar result was obtained for the 
more powerful neural network classifiers (below).  We speculate that non-control TCs are 
perturbed by expression constructs or RNAi knockdowns that serve to drive phenotype in 
certain determinate ways that can support construction of effective classifiers, while, in 
contrast, the gfp1 TC is not driven in any particular manner and so is less able to support 
such classifiers.  This has implications for the image analysis strategy of defining 
classifiers for normal cells as a way of automating identification of abnormal cells, for it 
suggests that normal cells may be more intrinsically variable and thus less able to support 
such classifiers. 

Neural Networks 
Our promising but modest results with Fisher linear discriminants (FLDs) encouraged us 
to explore more powerful classifiers.  We opted to move to Neural Networks (NNs) in 
favor of other classification strategies such as Support Vector Machines (SVMs) because 
of the convenience of being able to continue working in MatLab using the Neural 
Network Toolkit, and because SVMs operate on linear combinations of transformed 
feature values we believed would be hard to interpret based on our experience with 
principal component analysis (above).  We based our strategy for building NNs on a 
variant of the procedures used for FLDs, but the higher computational demands of NN 
training required considerable streamlining.  We used MatLab 2006b and Neural 
Network toolkit version 5.0.1.  We summarize our procedures below: 
 
We emphasize also that while we developed and trained NNs in their capacity as 
classifiers, our principal interest in and usage of them was to use NN scores as 
quantitative measures of similarity of cells to treatment classes.  Thus in our final 
analysis we nowhere actually use NNs to classify cells, but only use them to assess 
whether cells are morphologically similar to the cells in a target TC. 
 
Data set for NN training: Table S5 describes the composition of the set of 804 cell 
segments (S804) used for NN training.  This set contains 9 TCs that feature additional 
constitutively active alleles for Rac1 and Rho1, the ΔN-SIF TC described earlier, a TC 
where the full-length form of the RhoGEF SIF is overexpressed (vs. ΔN-SIF TC where a 
N-terminally truncated form of SIF is overexpressed), and overexpression constructs for 
two additional GEFs: CG3799 and ΔNRhoGEF3. Unlike the initial attempts to derive 
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classifiers described previously where TCs were selected based on the particular gene 
that was targeted by RNAi or overexpressed, all TCs (except for gfp1) used for NN-based 
methods were selected due to the fact that cells of each TC were qualitatively distinct 
from control cells. 
 
Treatment Class N Qualitative Phenotype 

CG3799_overexp 55 Long, bipolar shaped cells. Large cell body. 

ΔNRhoGEF3_const_overexp 57 Very small, often perfectly round cells with little variation between cells. 

gfp1 145 Polar cells with leading-edge lamellipodia, filipodia, and trailing edge. 

ΔN-SIF 36 Very large cells with extensive lamellipodia. Loss of polarity 

RacF28L 130 Extensive lamellipodia and filopodia formation. Loss of polarity 

RacV12 45 Extensive lamellipodia formation. Loss of polarity. 

RhoF30L 128 Small compacted cells with jagged, “fuzzy” edges. 

RhoV14 56 
Extensive, long and irregular protrusions. Cells body appears small and 
retracted. 

SIF1_full_overexp 152 Largely appear wild-type 
TOTAL 804  
 
Table S5: Composition of set of cell segments used for NN training 
 
Classifiers developed: NN classifiers were trained for each of the 9 TC vs ~TC 
comparisons for individual TCs.  However, we also trained NNs for three additional 
comparisons involving pairs of similar TCs; in particular, we trained NNs for 
 

• RacV12 and RacF28L (175 cell segments) vs. the aggregate of all other TCs (631 
cell segments); these are distinct constitutively active Rac1 alleles.  The set of 175 
positive cases was denoted RacV12_RacF28L. 

• RhoV14 and RhoF30L (184 cell segments) vs. the aggregate of all other TCs (620 
cell segments); again, these are distinct consitutively active Rho1 alleles.  The set 
of 184 cell positive cases was denoted RhoV14_RhoF30L. 

• ΔN-SIF and SIF1_full_overexp (188 cell segments) vs. the aggregate of all other 
TCs (652 cell segments); ΔN-SIF is a constitutively active form of SIF1, whereas 
SIF1_full_overexp is a constitutively expressed full length wild type SIF1 gene.  
The set of 188 positive cases was denoted ΔN-SIF_SIF1_full_overxp. 

 
Because positive sets for NN training are not always TCs (treatment classes) but 
sometimes unions of TCs, we use the more general term "target class" (TGC) to describe 
the positive cases of our NN training procedures. 
 
Feature reduction and reduction: Features were clustered, t-tests for TGC vs. ~TGC 
comparisons were performed, and the best (i.e., lowest t-test P-value) feature from every 
cluster selected, in a manner identical to the way these steps were performed for FLDs, 
yielding a ranked reduced list of features.  However, unlike for FLDs, no cutoff on P-
values was used to further reduce features.  Instead, because NN training is much more 
computationally intensive than FLDs, and because it requires consideration of many 
network architectures, we used a much simpler method of feature selection than the 
already computationally intensive implementation of the Sequential Forward Floating 
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Selection algorithm we used for FLDs.  Instead, when training a NN whose architecture 
involved k input features, we simply used the first k features from this ranked list.  The 
NN architectures we used were such that 1≤ k ≤ 12 (see NN architectures).   
 
NN architectures:  We trained and tested the set of 33 small and simple network 
architectures described in Figure S14.  These networks all involved small numbers of 
input (up to 12, see Feature selection and reduction above) and intermediate neurons to 
limit the serious potential for overtraining entailed by our small training sets. 

 
NN training parameters, classification: NNs were defined to use log-sigmoid transfer 
functions for every intermediate and output neuron.  Optimization used default MatLab 
parameters except for explicit specification of 250 epochs, a training function of 'trainscg' 
(scaled conjugate gradient backpropagation), and use of NN error weights described 
below. Target values for training were 1 for all positive (TGC) cases and 0 for all 
negative (~TGC) cases.  After training, cases were classified as positives (TGC) if their 
NN score  ≥ 0.5 and negative otherwise. 
 
NN error weights:  Preliminary testing with NNs indicated that, similar to the case of 
FLDs (above), sensitivity of NNs was improved when NNs were optimized during 
training to minimize average false positive and false negative error vs. total error.  To 
achieve this weighing, a custom "performance function" (i.e., error calculation function) 
was written in MatLab that computed error as in Equation (1). 
 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+−⋅⋅= ∑∑
∈∈ Negi

i
Posi

i NNScore
Neg

NNScore
Pos

error 22
||

11
||

1
2
1)1(  

 
In this equation, Pos = the set of positive (TGT) cases, Neg = the set of negative (~TGT) 
cases, and NNscorei is the score for case i computed by the neural network.  Error 
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Figure S14: Neural network architectures trained and tested for TGC vs. ~TGC classifier 
development.  Note the designations used to describe each architecture. 
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computed by the default MatLab performance function is unweighted in that it does not 
employ the factors 1/|Pos| and 1/|Neg|, or the coefficient 1/2.  Our error calculation 
procedures is thus analogous to our use of the average of the FPR and FNR used in FLDs 
above, except that square differences of NN scores from training targets are used instead 
of counts of false positives and false negative errors.  An example of how this weighting 
improved sensitivity is shown in Figure S15. 
 

Figure S15: Example of effect of using error weights described in equation (1) from preliminary 
results collected in the process of developing the neural network training algorithms described in the 
text.  The graph shows the sensitivity and specificity estimated on multiple leave out test sets of 
neural networks trained for the RhoV14 target class (TGC) using a variant of procedures described 
in the text.  Along the abscissa are NN architectures, where those ending in a "w" were trained using 
error weights (1) and those ending in a "u" were unweighted and did not use (1).  Regions of the 
graph in blue are "u", regions in yellow are "w", and the architectures in each blue area are identical 
to and in the same order as the architectures in the yellow areas to their right.  Sensitivity (lower 
line) is generally higher for "w" training than "u" training for corresponding architectures. 
Specificity (upper line) is generally lower for "w" training than "u" training.  These results indicate 
that use of error weights (1) achieves substantial improvements in sensitivity at the cost of some 
loss of specificity.

NN initial weights and biases:  The non-linear optimization required to train an NN is 
affected by initial seed values for neuron connection weights and biases (IWB).  In 
MatLab's implementation, IWBs are chosen randomly if not explicitly specified, and 
preliminary testing indicated that the IWB could have substantial influence on the success 
of NN training (see Figure S16).  Therefore, for each NN architecture considered, we 
captured 25 sets of MatLab-generated random IWBs, and used and re-used these in all 
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evaluations of the architecture.  We designed NN training to choose not only the best NN 
architecture, but also the best of its 25 associated IWBs.  

 

Figure S16: Effect of random initial weights and biases on NN sensitivity.  Shown are the test set 
(lower surface) and training set sensitivity (upper surface) for each of the neural network 
architectures and 25 random NN initial weight and bias sets, averaged over the random test / 
training sets, from the same runs as featured in Figure S15. The initial random weight and bias 
set exhibits substantial influence over the success of a given NN architecture as measured by 
sensitivity.   

 
NN training: The algorithm used to train and select the best NN is diagrammed in Figure 
S17.  For each of our 12 TGCs, we performed a preliminary screening of our 33 NN 
architectures, in which we assessed the success of each of the NN architectures on a set 
of 25 random partitions of the S804 segment set into test and training sets, and 25 IWBs.  
In each of the 25 random partitions, 10% of the positive and 10% of the negative cases in 
S804 were chosen as the test set, and the remaining 90% were used for training.  All NN 
training used the NN error weights described above.  The success of each NN 
architecture was assessed by means of a distance measure (DM) defined as follows: The 
average test set specificity and average test set sensitivity (averaged over the 625 
trainings of the architecture [i.e., 25 IWBs × 25 training/test sets], and expressed as 
fractions between 0 and 1) were plotted as a (x,y) coordinates on a plane, and the 
Euclidean distance between this point and the point (1,1) was calculated.  The DM 
therefore assesses how far the NN architecture, when trained, deviates from perfect test 
set sensitivity and specificity.  
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Figure S17: Schematic of NN training algorithm (see text for details).
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Figure S17: Schematic of NN training algorithm (see text for details).
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The five NN architectures that exhibited the five lowest DMs in preliminary screening 
were deemed the five best architectures, and these were then tested more thoroughly in a 
subsequent refined screening step:  Each of these architectures was subjected to 
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comprehensive leave-one-out testing with the S804 segment set for each of the 25 IWBs.  
The architecture and IWB among these 5 × 25 combinations with the lowest DM was 
then selected as the best NN architecture and IWB.  Final network weights and biases 
were computed for this NN architecture from its associated IWB and trained on the 
complete S804 set, and the resulting weights and biases then used to score all cell 
segments in our complete data set with this NN. 
 
 

  Final NN Prelim NNs 

  S804 
Set of 5383 
segments S804 leave-1-out   

Target Class (TGC) Final NN Sens Spec Sens Spec
Mean 
Sens

Mean 
Spec DM

Best 
NN 

rank
Best 
Prelim NN

ΔNRhoGEF3_const_overexp N_12_2_1_w 100.0 95.6 100.0 94.4 100.0 95.7 0.04 2 n_12_1_w 
ΔN-SIF N_5_1_w 97.2 93.1 97.2 93.8 97.2 92.7 0.08 1 n_5_1_w 
RhoV14 N_3_1_w 89.3 85.7 89.3 76.9 85.7 85.7 0.20 1 n_3_1_w 
RhoF30L N_9_3_1_w 92.2 84.3 92.2 77.3 86.7 84.2 0.21 4 n_9_2_1_w 
RacF28L N_12_1_w 89.2 81.6 89.2 76.4 86.2 81.0 0.24 3 n_10_1_w 
RacV12_RacF28L N_9_1_w 81.1 81.1 81.1 78.0 86.3 80.8 0.24 4 n_5_1_w 
CG3799_overexp N_9_1_w 81.8 87.2 81.8 83.7 76.4 87.0 0.27 3 n_10_1_w 
RhoV14_RhoF30L N_11_3_1_w 88.0 82.4 88.0 70.7 82.1 79.8 0.27 1 n_11_3_1_w 
RacV12 N_12_1_w 88.9 75.8 88.9 75.1 82.2 75.0 0.31 1 n_12_1_w 
gfp1 (GFP controls) N_11_2_1_w 80.7 62.8 80.7 46.8 66.9 72.2 0.43 5 n_10_1_w 
ΔN-SIF_SIF1_full_overexp N_10_1_w 71.3 68.0 71.3 63.3 71.3 67.4 0.43 1 n_10_1_w 
SIF1_full_overexp N_10_1_w 71.1 64.9 71.1 58.4 69.1 64.3 0.47 1 n_10_1_w 

 
Table S6: Characteristics of NNs derived from training algorithm described in Figure S17 and text.   

Best NN = NN architecture that emerged as best after training.  Final NN = the best NN architecture 
trained on the entire S804 segment set using the best initial weights and biases (IWB) determined by the 
training algorithm.  Sensitivity (Sens) and specificity (Spec) are provided for the Final NN as computed 
on the entire S804 set and a larger set of 5383 segments comprising the first 12 batches of cell segments 
processed for features (see above).  Mean sensitivity (Mean Sens) and specificity (Mean Spec) 
computed for the Final NN architecture and IWB from the 804 leave-1-out trainings and tests in the 
refined screening of the NN training algorithm (see Figure S17) are also presented, as well as the 
distance measure DM (see text).  All sensitivities and specificities are given as percentages.  TGCs are 
listed in increasing DM order, i.e., from best to the worst performing NN.  In most cases Final NN S804 
Sens and Spec exceed or equal the Mean Sens and Mean Spec from the S804 leave-1-out testing, a 
possible result of training of the Final NN on the complete S804 set vs. the 803 segments used for 
training in S804 leave-1-out training.  As described in Figure S17, the Best NN was chosen from one of 
the five best NNs determined from preliminary screening.  The Best Prelim NN (as measured by DM) 
is indicated, as is the rank of the Final NN among the 5 preliminary NN architectures.  In half (six) of 
the TGCs, the Final NN is different from the Best Prelim NN, indicating that the refined screening of 
the NN training algorithm (Figure S17) was effective in choosing a better performing architecture.  In 
five of these six cases (yellow background), the Final NN architecture was more complex or used a 
greater number of input features than the Best Prelim NN, indicating that refinement depended on 
increasing the number of features and and/or the complexity of feature processing.  In the single 
exception (pink background), refinement involved removing one feature.  

 
For each TGC, this NN training algorithm performed 121250 NN trainings, so that a total 
of 1455000 trainings were performed over our entire set of 12 TGCs.  Characteristics of 
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the best NNs for each TGC are given in Table S6.  NN data including the final trained 
network's weights and biases and the NN's input features are presented on our 
supplementary web site http://arep.med.harvard.edu/QMS in the form of MatLab 
statements that can be (and were) used to recover the final trained NNs and compute 
scores for all cell segments in our data set.  Classifier scores generated for all 12,601 cell 
segments are provided as supplemental files accessible from this same web site. 
 
NN development -- Conclusions:  NNs generated classifiers with excellent performance 
for some of our TGCs, including cells treated with our ΔNRhoGEF3 overexpression, ΔN-
SIF, and RhoV14 constructs.  As noted above, a principal reason for working with NNs 
was to develop classifiers with better sensitivity compared to FLDs.  A comparison of 
Tables S3 and S5 for ΔN-SIF, RhoV14, and gfp1 (GFP controls) shows that NNs did, in 
fact, exhibit improved sensitivity, and this was also true of NNs for Rac1-related 
constructs (FLD data not shown in Table S4).   As improved sensitivity frequently comes 
at the cost of lower specificity, specificities for the NN classifiers are generally modest 
but still comparable or better than corresponding FLDs.  We emphasize that these 
sensitivities and specificities describe the error of the NN classifiers on the task of 
classifying a single cell segment, and (as is generally true of image analysis), the 
performance of the classifiers would be expected to be improved when classifying entire 
TCs comprising multiple similar cells -- and this was the context in which we used these 
NNs (see section on Quantitative Morphological Signatures and Clustering and 
Replicability Analysis below).  As noted above, we used NN scores as similarity scores 
indicating the degree to which a TC was like one of our TGCs, rather than as tools for 
actual classification of cell segments. 
 
Similar to the case of FLDs, the NN developed for gfp1 (November 2005 GFP controls) 
had relatively poor performance, consistent with our speculation above that cells that are 
not driven by a construct to adopt particular morphologies are more variable 
morphologically and thus less amenable to successful classifier development on the basis 
of shape and content.  Perhaps surprisingly, in view of the good performance of the ΔN-
SIF NN, the NN trained for a full SIF1 overexpression construct performed very poorly.  
This may indicate either that ΔN-SIF overexpression affect cell morphology in a more 
robust fashion than overexpression of full-length SIF. Such a model is consistent with the 
prediction that ΔN-SIF is an activated RhoGEF, whereas the majority of expressed full-
length SIF is presumably in an autoinhibited conformation (7). 
 
In the case of NNs based on Rac1 and Rho1 constructs, we found that NNs were capable 
of distinguishing constructs based on different alleles of the same gene with good 
performance. However the possibility that different samples of essentially similar cells 
are subject to sample and treatment effects that induce enough difference in morphology 
for a NN to distinguish them should not be excluded. However, when evaluating whole 
TCs comprising multiple cells, and combining multiple NNs in the context of clustering, 
we find evidence of replicability of our NN-based analysis (see Clustering and
Replicability Analysis below) and conclude that both of these steps help improve the 
statistical power of our NNs.    
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These replicability results, however, were based only on a subset of the better performing 
NNs.  The NN for combination TGC RhoV14_RhoF30L performed less well than either 
of the individual RhoV14 and RhoF30L NNs, while that for RacV12_RacF28L had 
performance in between the corresponding individual NNs.  Again, this result is 
ambiguous between the hypothesis that the individual TCs within the TGCs are more 
different than they are similar, and that the larger and more variable combination TGCs 
could only support inferior classifiers.  We therefore dropped the combination TGCs 
from consideration and selected individual Rac1- and Rho1- based NNs for further use, 
and also dropped the gfp1 and SIF1_full_overexp NNs from consideration for the reasons 
cited above. 
 
A final observation is that several of the NNs involve a single layer of input neurons 
connecting to a single output neuron, an architecture that should divide feature space with 
a single separation plane in a manner equivalent to FLDs; however we judge the 
performance of the NNs to be superior to that of the corresponding FLDs in the cases of 
ΔN-SIF, RhoV14, and gfp1.  Why did we not find FLDs as good as these NNs?  We note 
that our judgment of 'better performance' is weighted towards better sensitivity, and that 
although the error weighting we used for NNs vs our FLDs is similar, the frameworks are 
not identical, so that one possibility is simply that the error weighting used for NNs was 
more successful for our goal of improved sensitivity.   However, it is also true that unlike 
these NNs, FLDs are constrained by the Fisher heuristic to find a separation plane 
perpendicular to a specific line in feature space; therefore the NNs have more freedom to 
find a better separation.  Finally, several of our best NNs do employ intermediate layer 
neurons and therefore find better separations by employing separators more complex than 
planes -- that these architectures were not chosen as optimal for several of our TGC vs. 
~TGC classifications suggests that their inherently better performance was compromised 
by overtraining that was detected and rejected by our use of leave-out cross-validation in 
our NN training algorithm.  The fact that several of our NNs reduce to planar separators 
may therefore indicate only that, given the small size of our data sets, overtraining could 
only be avoided by adopting the most simple NN architectures. 

Quantitative Morphological Signatures (QMSes) 
 
While our feature analysis generated 145 numerical features corresponding to aspects of 
morphology for each cell segment and thus provided immense information about cell 
morphology, these features had complex relations to each other and unclear biological 
interpretation.  We used our NN classifiers to see past these internal relationships and 
provide biological interpretation by means of QMSes.   
 
For each TC in our data set, we defined a QMS as a vector of NN Z scores for the 7 most 
successful our NNs -- ΔN-SIF, ΔNRhoGEF3_const_overexp, CG3799_const_overexp, 
RhoV14, RhoF30L, RacV12, and RacF30L.  Specifically, for a given TC and NN 
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where μNN,all and σNN,all are the mean and standard deviation of the scores for the NN 
classifier over all 12,601 segments.  The NN Z score thus measures the difference 
between the mean NN score for the TC and the mean of the NN score over all segments, 
compared to the standard deviation of the mean of a set equal in size to the TC of 
randomly chosen segments.   NN Z scores thus provide a measure of the degree of 
confidence that a TC is different from random on the scale defined by that NN.  Since the 
TGC used to train an NN has scores near the maximum possible score of 1 for an NN, a 
high NN Z score for a TC indicates that the TC rates high on this NN compared to 
random cell segments and is thus similar in morphology to the morphology of the TGC.  
We used NN Z scores to define QMSes instead of the NN scores themselves to 
compensate for the difference in statistical power of the NNs trained on different TGCs, 
described above.  In short, a QMS for a TC describes the similarity of the morphology of 
that TC relative to the reference classes ΔN-SIF, ΔNRhoGEF3_const_overexp, 
CG3799_const_overexp, RhoV14, RhoF30L, RacV12, and RacF30L.  It thus uses our 
feature analysis to provide a biological interpretation of the TC's feature information in a 
convenient quantitative form. 
 

Clustering and Replicability Analysis 
 
We used QMSes to cluster the 273 TCs in our data set.  Hierarchical average linkage 
clustering was performed using Cluster and TreeView (21) using uncentered Pearson 
Correlation Coefficients as the distance measure, and individual clusters were defined 
interactively by finding the highest nodes at which the distance measure became greater 
than .8.  Several thresholds were evaluated and this threshold was chosen because this 
level of correlation resulted in coherent groups of qualitatively similar cells, meaning that 
clusters determined by smaller correlation scores included cells that were visually 
morphologically diverse, whereas determining clusters based on higher correlation scores 
resulted in visually morphologically similar cells becoming segregated into distinct 
groups.  Clustering was performed multiple times during the course of our data gathering 
and analysis. 
 
We used clusters generated from a set of 11312 segments that represented the first 13 of 
the 14 batches of cell segments that we gathered over the course of this analysis.  These 
segments contained 32 examples of treatments that were repeated in 2, 3, or 5 distinct 
samples (see Table S2). In 15/32 cases, 2-5 different amplicons were used to target the 
same gene, while in 16/32 cases the same amplicon was present in different wells (1/32 
was a control well with no dsRNA). We clustered these TCs by their QMSes using the 
procedures above, maintaining distinct identities for the individual repeated treatments, 
so that each individual sample within a set of replicates found its own individual place in 
the clustering, resulting in a partition of 273 TCs (with replicates distinguished) across 13 
clusters. We computed the average number of distinct clusters occupied by the distinct 
replicate TCs for treatments with 2, 3, and 5 replicates, a value we called the co-
clustering index.  We then randomized cluster assignments 5000 times to compute a null 
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distribution of co-clustering index, and estimated the P value of finding the actual-
coclustering index.  The results are shown in Table S7. 
 

RepsetSize 2 3 5  
RepsetCount 29 2 1  
ActualCoClus 1.58621 2 1  
AvgRandCoClus 1.75132 2.3308 3.2014 mean(CoClus) over all random clusterings 
StdRandCoClus 0.079684 0.438531 0.825454 std(CoClus) over all random clusterings 
MinRandCoClus 1.37931 1 1 min(CoClus) over all random clusterings 

Pvalue 0.0368 0.409 0.007 
Fraction of random clusterings with CoClus <= actual 
CoClus 

 
Table S7: Replicability test statistics for clustering of treatments with replicates distinguished (see text for 

details) 
 
For the 29 cases of 2 replicates, and for the single case of 5 replicates, P<.05 (bold) 
provides evidence that actual replicates co-cluster better than random clusterings.  This 
result was not obtained for the case of three replicates, although this involved only two 
cases.  We took these results as indicating that our feature analysis, NN scoring, QMS-
based clustering produced results that were robust to biological replicates, although in the 
case of two replicates, the fact that the P value was close to .05 suggests substantial 
variability across replicates.   We stress that many of these replicates were biological and 
not technical replicates, which would increase the degree of variability. 
 
On the basis of these results, we combined all replicate treatment segment samples into 
the same TCs in all further analysis.    The final clustering of all 12,601 cell segments 
across 249 TCs yielded 41 clusters.  Cluster assignments for each TC are presented below 
in Table S8. 
 

Enrichment Statistics 
 
We computed enrichment statistics for our final clustering against functional category 
information derived from GeneOntology (22), results of prior screens reported in the 
literature, and results of prior screens in our laboratory (www.flyrnai.org and 
flight.licr.org), using standard hypergeometric statistics, i.e.,  
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where C = a cluster, F = a functional category, O(C,F) = number of TCs that are in 
common between C and F (i.e, the overlap), N = total number of TCs that both appear in 
the clustering and which have functional category assignments, and |C| and |F| represent 
the sizes of C and F, respectively.  Calculations were performed using the MatLab 
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hygecdf function.  In the case of screens, F was treated as {0,1}, where 1 = the condition 
of passing the screen and 0 = the condition of not passing the screen. 
 
While many PC,F < .05 were found, the number of statistical tests was so large that none 
of these P values were statistically significant after correcting for multiple hypotheses, 
even restricting attention to comparison of the clustering to a single set of functional 
categories.  Nevertheless, a marginally significant P value of 5.78E-05 was computed for 
the enrichment of cluster 33 (19 members) by genes annotated with the function RhoGAP 
(17 genes represented in the N = 249 TCs in the overall clustering), which had an overlap 
of 7 genes.  This involved 1271 statistical tests of 41 clusters with 31 functions, implying 
a Bonferroni-corrected critical value of .05/1271 = 3.9E-05. 
 
Nevertheless, we used these P-values to describe relative functional enrichment in 
clusters, simply by assigning the function with the lowest P-value as the "most enriched" 
function in a cluster.  Based on concordant literature and other experimental observations 
cited in the text, we feel these enriched classes may be biologically relevant (see text).  In 
some cases additional observations concerning these P-values supported these 
conclusions:  For example, the P value of  0.0245698 was computed for the enrichment 
of cluster 6 by genes annotated as Rap signaling components (3/5 genes in dataset), 
whereas no other cluster had a P<0.8 value for Rap components. 
 

Supplemental Text 
 
Here we discuss in detail additional findings of our study, and provide further validation 
for our experimental and statistical methods. 
 
Adhesion turnover is intimately coupled with the regulation of cell body retraction and 
the stimulation of cortical tension. 
 
In addition to being enriched in ArfGAPs, Cluster 18 contains dsRNAs targeting Gα49B, 
Gαι65A, Gβ13F, the Gα-subunit concertina, and the loco gene that encodes an RGS-
containing protein (Figure S18). Concertina has repeatedly been implicated in promoting 
cortical tension by acting as an upstream activator of Rho/ROCK/myosin activity, both in 
tissue culture and whole organism models (23-25). Interestingly, overexpression of 
Gαι65A in BG-2 cells results in highly-rounded cells with few protrusions that cluster 
with ΔN-RhoGEF3 overexpressing cells (Cluster 3). We propose that Gαι65A and other 
heterotrimeric G-proteins and regulators within this cluster likely function in a modular 
signaling cassette that promotes cortical tension. Inhibiting the activity of this cassette 
results in a general loss of tension and deregulated cell spreading that is quantitatively 
similar to inhibition of adhesion turnover pathways. We propose that adhesion 
disassembly and the upregulation of cortical tension must be regulated simultaneously, 
and we have identified a local network of proteins which regulates these activities. In fact 
mammalian GIT1, which is involved in adhesion disassembly was originally isolated 
through its physical interactions with a G-protein receptor coupled kinase (26), which 
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Figure S18. Phenoclusters Represent Functionally Related Genes.  (A) Control BG-2 cells (expressing 
GFP) have a polarized leading-edge and a retracted tailing-edge. Gef26 and armadillo RNAi results 
in loss of cellular protrusions (Cluster 6). Kelch and GEF64C RNAi cells display protrusive 
activity, but have few or poorly-formed lamellipodia. Paxillin, CG16728, pebble, and Gια65A
RNAi are members of the same phenocluster where cells are extensively spread and/or have large 
protrusions (Cluster 18), but Pebble-deficient cells are typically multi-nucleated (chevrons) 
suggesting these cells do not undergo cytokinesis. Cluster 18 also contains cells overexpressing 
ΔN-SIF in combination with CG3799 dsRNA that are indistinguishable from cells expressing ΔN-
SIF alone. However, Rac1 or Rho1 dsRNAs in combination with ΔN-SIF overexpression results in 
phenotypes that fall into different phenoclusters (Clusters 25 and Cluster 31 respectively). Apc-2 
deficient cells display an aberrant number of long protrusions (Cluster 27). Rho1 and RhoGEF4
dsRNA are members of the same phenocluster (Cluster 33). All scale bars equal 10 μM. 

suggests ArfGAP signaling, such as through CG16728, acts to couple the upregulation of 
tension with adhesion turnover. 
 
QMSes for pebble and RacGAP50C dsRNA, also co-cluster with paxillin and ArfGAP 
dsRNA QMSses (Cluster 18). Both pebble and RacGAP50C have well-established roles 
in the regulation of cytokinesis. Visual inspection of cells where pebble and RacGAP50C 
have been targeted by dsRNA reveals that while these cells are phenotypically similar to 
other cells in the cluster, they are also bi-/multi-nucleated strongly suggesting that normal 
cytokinesis has been inhibited resulting in their large/spread and unpolarized morphology 
(Figure S18). Thus, currently our methods do not have the power to distinguish failures in 
cytokinesis from defects in adhesion turnover and cortical tension, but we do not exclude 
the possibility all these processes may be regulated by similar regulatory pathways that 
involve Pebble and RacGAP50C. 
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Morphologies indistinguishable from wild-type cells 
 
A cluster of genes that is defined by QMSes with high RhoV14 and CG3799 NNZs 
includes both RhoV14 overexpression, CG3799 overexpression and RNAi, GFP1 and 
GFP2, and TCs where a number of different cDNAs are overexpressed (Cluster 33). 
However given our ability to generate two unique classifiers for both RhoV14-, and 
CG3799-, expressing cells, the changes in cell shape that RhoV14 and CG3799 promote 
are statistically distinct from each other, as well as from the shape of control cells. Thus 
in some cases our current methods do not have to power to resolve particular phenotypes 
or signaling states even when qualitative and quantitative differences may exist amongst 
these phenotypes.  
 
QMSes as Readouts of Signaling Pathway Activity 
 
We reasoned that if our assay indeed captures the roles of specific genes/protein in 
signaling pathways that control cell morphology, modifying or perturbing the activity of 
these genes/proteins through both direct and indirect means should be reflected in their 
QMSes. Therefore we tested the effects of a limited set of dsRNAs for their ability to 
suppress the phenotype induced by overexpression of ΔN-SIF. dsRNAs targeting CG799, 
Rab5, RhoGAP16F, RhoGAP54D, and MTL failed to suppress the effects of ΔN-SIF 
overexpression, as cells expressing ΔN-SIF and simultaneously treated with these dsRNA 
have QMSes that co-cluster with the QMS of ΔN-SIF+GFP dsRNA (Cluster 18). 
RhoGEF3 dsRNA only mildly suppressed the effects of ΔN-SIF overexpression (Cluster 
17).  However the addition of dsRNAs targeting Rac1 (Cluster 31), Rho1 (Cluster 25), 
enabled (Cluster 33), and Arc-p34 (Cluster 33) significantly altered the QMS of ΔN-SIF 
expressing cells, suggesting that the proteins encoded by these genes act downstream of 
SIF activity. This is consistent with the observation that both SIF and Tiam-1 can act as 
Rac-specific GEFs, and that Rho activity is required for effect of Tiam-1 on mammalian 
cell morphology (27). Furthermore, Tiam-1 directly binds the Arp2/3 complex of which 
Arc-p34 is a member (28). Taken together these results suggest that quantitative 
morphological signatures can serve as sensitive readouts for both cell morphology and 
the activity of signaling pathways, and highlight the fact that signaling pathways can be 
modeled using phenotypic data. 
 
QMSes are predictive of biochemical activity 
 
Rho1 dsRNA clusters with a small group of genes that includes RhoGEF2 dsRNA, a 
well-characterized direct and specific upstream activator of Rho1 GTPase activity (29-
32) (Cluster 33). Therefore, we reasoned that RhoGEF4, an uncharacterized GEF that 
when inhibited results in a QMS that is part of this cluster, may also be a direct activator 
of Rho1. Using an in vitro method that detects total levels of active Rho in cell lysates, 
we observe that dsRNA targeting of RhoGEF4 specifically reduces total Rho activity in 
BG-2 cells, whereas dsRNAs against a variety of other RhoGEFs do not (Figure S19). 
These data support the notion that RhoGEF4, like RhoGEF2, is a major upstream 
regulator of Rho activity in BG-2 cells. Furthermore, dsRNAs targeting RhoGEF3 and 
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Figure S19. In vitro Rho activation assay determining total Rho activity in BG-2 cell extracts 
prepared as follows: control/GFP-alone transfections; Rho1 dsRNA; serum-starved cells (24 hrs); 
serum-starved (24 hrs) cells stimulated with serum for 30 min; CG3799 dsRNA; RhoGEF3 
dsRNA cells; p190RhoGAP dsRNA; RhoGEF4 dsRNA; RhoGAP71E dsRNA; and  RhoGAP19D
dsRNA. As a control we also monitored Rho activation using purified recombinant RhoQ60L. 
RhoGEF4 dsRNA resulted in a significant decrease in total Rho activation (P=0.003), while 
RhoGEF3 dsRNA (P=0.017), and RhoGAP71E dsRNA (P=0.014) resulted in significant increases 
in total Rho activation. Each data point represents the normalized mean value of independent 
experiment where N>3. Error bars represent the mean +/- SD. Fold Rho activation corresponds to 
relative luciferase activity versus that of control experiment. Significance was determined using 
Student’s T-test. A single asterisk denotes P<0.05, two asterisks denotes P<0.01.  

RhoGAP71E increased basal Rho activity in BG-2 cells (Figure S19), which is 
remarkably consistent with the fact that inhibition of these genes results in a QMSes with 
high RhoF30L NNZs. Taken together, these data suggest that quantitative morphological 
profiling can be used to simultaneously monitor signaling activity on both local (i.e. at 
sites of adhesion assembly or actin polymerization) and global/cell-wide scales. 
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Supplemental Tables 
 
Table S8: Assignment of treatment conditions to particular phenoclusters based on 

clustering of QMSes with Correlation Distance Cutoff > 0.80 
 
Treatment Class Gene Symbol Pheno 

Cluster 
Pathway Function 

Rac1 FBgn0010333   Rac1   1 Rho Rho GTPase 
GEF64C overexpression    1 Rho RhoGEF 
Rac1Rac2MTL    1 Rho Rho GTPase 
hAuroraB const. active 
overexpression 

   1   

CG32627 FBgn0052627  CG32627  2   
G protein beta 76C  FBgn0004623  G[beta]76C  3 G-protein G-gamma 
Microtubule-associated 
protein 205 

FBgn0002645     4   

CG8707 FBgn0033272  CG8707  4 Rag Rag GTPase 
RhoGAP71E FBgn0036518   RhoGAP71E   4 Rho RhoGAP 
sec23 FBgn0037357  sec23  4   
GXIVsPLA2 FBgn0036545   GXIVsPLA2   5   
CG7940 FBgn0038576  CG7940  5   
armadillo FBgn0000117   arm   6   
Centrosomal protein 190kD  FBgn0000283   Cp190   6   
l(1)dd4 FBgn0001612   l(1)dd4   6   
Sop2 FBgn0001961  Sop2  6   
lightoid FBgn0002567 ltd 6 Rab Rab GTPase 
staufen FBgn0003520   stau   6   
slingshot FBgn0003971 shot 6   
Ankyrin FBgn0011747   Ank   6   
Arf51F FBgn0013750  Arf51F  6 Arf Arf GTPase 
Merlin FBgn0013951   Mer   6   
rho-like FBgn0014380   RhoL   6 Rho Rho GTPase 
Gef26 FBgn0021873   Gef26   6 Rap RapGEF 
cib FBgn0026084  cib  6   
C3G FBgn0026145   C3G   6 Rap RapGEF 
RhoGAPp190 FBgn0026375  RhoGAPp190  6 Rho RhoGAP 
CG8801  FBgn0028473  CG8801  6   
CG7578 FBgn0028538  CG7578  6 Arf ArfGEF 
CG1583 FBgn0030013  CG1583  6   
CG9699 FBgn0030772   CG9699   6 Septin Septin 

GTPase 
CG7846 FBgn0030877  CG7846  6   
CG4267 FBgn0031405   CG4267   6   
Rab30 FBgn0031882  Rab30  6 Rab Rab GTPase 
CG5160 FBgn0031906   CG5160   6   
CG5337 FBgn0032249   CG5337   6 Rab TBC GTPase 
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CG9426 FBgn0032485  CG9426  6   
Rab9 FBgn0032782  Rab9  6 Rab Rab GTPase 
CG9248 FBgn0032923  CG9248  6   
CG4853  FBgn0034230  CG4853  6 Ras RasGEF 
CG10540  FBgn0034577   CG10540   6   
RhoGEF3 FBgn0035128  RhoGEF3  6 Rho RhoGEF 
CG33232  FBgn0035347  CG33232  6   
CG6838 FBgn0037182  CG6838  6   
CG4448 FBgn0039067  CG4448  6   
SCAR FBgn0041781   SCAR   6 Rho Rho effector 
RapGAP1 FBgn0053529  Rapgap1  6 Rap RapGAP 
G protein alpha-i 65A 
overexpression 

   6 G-protein G-beta 

del-N-RhoGEF3 
overexpression 

   6 Rho RhoGEF 

yurt  FBgn0004049   yrt   7   
Rab-protein 3  FBgn0005586  Rab3  7 Rab Rab GTPase 
Neurofibromin 1 FBgn0015269  Nf1  7 Ras RasGAP 
CG6017  FBgn0036555  CG6017  7   
CG1193  FBgn0037375  CG1193  7   
kelch FBgn0001301  kel  8   
RanGAP FBgn0003346   RanGap   8 Ran RanGAP 
alpha-Catenin FBgn0010215   [alpha]-Cat   8   
twinstar FBgn0011726   tsr   8   
cnn FBgn0013765  cnn  8   
Septin-2 FBgn0014029  Septin-2 8 Septin Septin 

GTPase 
Trio FBgn0024277  trio  8 Rho RhoGEF 
Grip75 FBgn0026431  Grip75  8   
Rab3-GAP FBgn0027505   rab3-GAP   8 Rab Rab GTPase 
capt FBgn0028388   capt   8   
CSN1a FBgn0028838  CSN1a  8   
CG3009 FBgn0029720  CG3009  8   
Marf FBgn0029870   Marf   8   
Graf FBgn0030685   Graf   8 Rho RhoGAP 
Rab35 FBgn0031090  Rab35  8 Rab Rab GTPase 
Arc-p20 FBgn0031781  Arc-p20  8   
gartenzwerg FBgn0033714  garz  8 Arf ArfGEF 
CG15611 FBgn0034194   CG15611   8 Rho RhoGEF 
Mapmodulin FBgn0034282   Mapmodulin   8   
CG15097  FBgn0034396  CG15097  8   
GEF64C  FBgn0035574  Gef64C  8 Rho RhoGEF 
RhoGAP68F  FBgn0036257  RhoGAP68F  8 Rho RhoGAP 
Rab26 FBgn0037072  Rab26  8 Rab Rab GTPase 
CG32030  FBgn0052030  CG32030  8   
RhoF30L overexpression    8 Rho Rho GTPase 
Mtl FBgn0039532  Mtl  9 Rho Rho GTPase 
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Vav FBgn0040068  vav  10 Rho RhoGEF 
CG5745 FBgn0038855  CG5745  11 Rab TBC GTPase 
Cdep FBgn0032821   CdGAPr   12 Rho RhoGEF 
CG7324 FBgn0037074  CG7324  13 Rab RabGAP 
del-N-SIF overexpression   14 Rho RhoGEF 
canoe FBgn0000340   cno   15 Rap Rap Effector 
ran-like FBgn0036497  ran-like  16 Ran Ran GTPase 
Microtubule-associated 
protein 60  

FBgn0010342   Map60   17   

miranda  FBgn0021776  mira  17   
jitterbug  FBgn0028371   jbug   17   
p16-ARC FBgn0031437   p16-ARC   17   
del-N-SIF_RhoGEF3dsRNA   17   
concertina  FBgn0000384  cta  18 G-protein G-alpha 
Actinin FBgn0000667   Actn   18   
G protein alpha-i 65A FBgn0001104   G-i[alpha]65A   18 G-protein G-beta 
G protein beta 13F  FBgn0001105  G[beta]13F  18 G-protein G-gamma 
Mp20 FBgn0002789   Mp20   18   
pbl FBgn0003041  pbl  18 Rho RhoGEF 
gamma-tubulin at 23C FBgn0004176   [gamma]Tub2

3C   
18   

G protein alpha 49B FBgn0004435  G[alpha]49B  18 G-protein G-alpha 
gamma tubulin 37C FBgn0010097   [gamma]Tub3

7C   
18   

Gelsolin FBgn0010225   Gel   18   
ADP ribosylation factor 79F  FBgn0010348   Arf79F   18 Arf Arf GTPase 
Moesin FBgn0011661   Moe   18   
sanpodo  FBgn0011716  spdo  18   
Actin-related protein 66B FBgn0011744   Arp66B   18   
Rab-protein 2  FBgn0014009   Rab2   18 Rab Rab GTPase 
Rab5 FBgn0014010  Rab5  18 Rab Rab GTPase 
Rab-RP4 FBgn0015794  Rab-RP4  18 Rab Rab GTPase 
locomotion defects FBgn0020278   loco   18   
Phospholipase A2 activator 
protein  

FBgn0024314   Plap   18   

CG14782 FBgn0025381  CG14782  18   
Brahma associated protein 
55kD 

FBgn0025716   Bap55   18   

Rap21 FBgn0025806  Rap2l  18 Rap Rap GTPase 
Crag FBgn0025864  Crag  18   
Septin-5 FBgn0026361   Septin-5 18 Septin Septin 

GTPase 
Grip84 FBgn0026430   Grip84   18   
mini spindles  FBgn0027948   msps   18   
falten  FBgn0028380  fal  18   
centaurin gamma 1A  FBgn0028509  cenG1A  18 Arf ArfGAP 
alpha-catenin related FBgn0029105   alpha-catenin-

related   
18   

Patsas  FBgn0029137   Patsas   18   
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lava lamp  FBgn0029688  lva  18   
pod1 FBgn0029903   pod1   18   
CG12102 FBgn0030180   CG12102   18   
CG11063 FBgn0030530  CG11063  18   
RhoGAP15B FBgn0030808  RhoGAP15B  18 Rho RhoGAP 
RhoGAP19D FBgn0031118   RhoGAP19D   18 Rho RhoGAP 
CG13692 FBgn0031254  CG13692  18 Arf ArfGAP 
CG9135/RCC-1 FBgn0031769   CG9135   18 Ran RanGEF 
Menin 1 FBgn0031885   Mnn1   18   
Arc-p34 FBgn0032859  Arc-p34  18   
CG9243 FBgn0032926  CG9243  18   
Grp1 FBgn0032960  Grp1  18 Arf ArfGEF 
CG12736 FBgn0033184  CG12736  18   
CG16728 FBgn0033539  CG16728  18 Arf ArfGAP 
Dystrobrevin-like  FBgn0033739   Dyb   18   
RacGAP50C FBgn0033881   RacGAP50C   18 Rho RhoGAP 
CG8479 FBgn0033914  CG8479  18 Dynamin Dynamin 

GTPase 
CG5522  FBgn0034158  CG5522  18 Ral Ral GEF 
CG15609  FBgn0034180  CG15609  18   
RhoGAP54D FBgn0034249  RhoGAP54D  18 Rho RhoGAP 
EfSec FBgn0034627   EfSec   18   
CG33275 FBgn0035802   CG33275   18 Rho RhoGEF 
CG10971 FBgn0036309  CG10971  18   
CG10724  FBgn0036357  Aip1 18   
CG7365  FBgn0036939  CG7365  18   
Sar1 FBgn0038947  sar1  18 Sar Sar GTPase 
cenB1A FBgn0039056  cenB1A  18 Arf ArfGAP 
RhoGAP100F  FBgn0039883   RhoGAP100F   18 Rho RhoGAP 
paxillin FBgn0041789  Pax  18   
CG18858  FBgn0042175  CG18858  18   
CG30158 FBgn0050158  CG30158  18   
CG30440 FBgn0050440   CG30440   18 Rho RhoGEF 
CG30456  FBgn0050456  CG30456  18 Rho RhoGEF 
CG31683  FBgn0051683  CG31683  18   
MICAL FBgn0053208   MICAL   18   
RacF28L overexpression    18 Rho Rho GTPase 
RacV12 overexpression    18 Rho Rho GTPase 
SIF full-length 
overexpression 

   18 Rho RhoGEF 

del-N-SIF + GFP dsRNA    18   
del-N-SIF_CG3799dsRNA    18   
del-N-SIF_Rab5dsRNA    18   
del-N-
SIF_RhoGAP16FdsRNA 

   18   

del-N-SIF_RhoGAP54D 
dsRNA 

   18   

del-N-SIF+MTL_RNAi    18   
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homolog of RecQ FBgn0027375   RecQ5   19   
SIF FBgn0019652   SIF   20 Rho RhoGEF 
G protein gamma 30A FBgn0028433  G[gamma]30A  20 G-protein G-gamma 
CG5022 FBgn0032225  CG5022  20   
RhoBTB FBgn0036980  RhoBTB  20 Rho Rho GTPase 
formin 3 FBgn0053556   form3   20 G-protein G-alpha 
enabled FBgn0000578   ena   21 Rho Rho effector 
CG14034 FBgn0031691  CG14034  22   
CG8243 FBgn0033349  CG8243  23 Arf ArfGAP 
cappuccino FBgn0000256   capu   24 Rho Rho Effector 
G protein s-alpha 60A  FBgn0001123  G-s[alpha]60A  24 G-protein G-gamma 
shibire  FBgn0003392   shi   24 Dynamin Dynamin 

GTPase 
capping protein beta  FBgn0011570   cpb   24   
CG7420  FBgn0031344   CG7420   24 Ran RanGEF 
mbc FBgn0015513   mbc   25 Rho RhoGEF 
CG7787 FBgn0032020  CG7787  25 Rab RabGEF 
Rheb  FBgn0041191   Rheb   25 Rheb Rheb 

GTPase 
del-N-SIF+Rho1_RNAi    25   
RabX2 FBgn0030200  RabX2  26 Rab Rab GTPase 
CG14045 FBgn0040387   CG14045   26   
dia FBgn0011202   dia   27   
apc FBgn0015589  Apc  27   
apc2 FBgn0026598  Apc2  27   
Fimbrin FBgn0024238  Fim  28 G-protein G-alpha 
CG32138 FBgn0052138   CG32138   28 Rho Rho Effector 
Muscle-specific protein 300 FBgn0053715  Msp-300  28   
chrowded FBgn0015372  chrw  29   
CG8557 FBgn0030842   CG8557   30 Rho RhoGEF 
CG10188 FBgn0032796   CG10188   30 Rho RhoGEF 
Elongation factor 1?48D  FBgn0000556   Ef1[alpha]48D   31   
no receptor potential A FBgn0004625  norpA  31   
Cdc42  FBgn0010341   Cdc42   31 Rho Rho GTPase 
rtGEF FBgn0015803   rtGEF   31 Rho RhoGEF 
par1 FBgn0026193  par-1  31   
CG3799  FBgn0027593  CG3799  31 Rho RhoGEF 
CG11490 FBgn0031233   CG11490   31 Rab TBC GTPase 
Pld FBgn0033075   Pld   31   
CG11968 FBgn0037647  CG11968  31 Rag Rag GTPase 
CG12241 FBgn0038304   CG12241   31 Rab TBC GTPase 
RhoGAP92B FBgn0038747  RhoGAP92B  31 Rho RhoGAP 
CG30115 FBgn0050115   CG30115   31 Rho RhoGEF 
Moody beta overexpression    31 G-protein GPCR 
Cdc42Y32A overexpression    31 Rho Rho GTPase 
CG3799 overexpression    31 Rho RhoGEF 
RhoV14    31 Rho Rho GTPase 
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del-N-SIF+Rac1_RNAi    31   
dLis1 overexpression    31   
dPar1 overexpression    31   
dStrad overexpression    31   
gfp1    31   
gfp2    31   
Nrg overexpression    31   
TumL overexpression    31   
visceral mesodermal 
armadillo-repeats  

FBgn0022960   vimar   32   

G protein o-alpha 47A  FBgn0001122   G-o[alpha]47A   33 G-protein G-gamma 
Sos FBgn0001965   Sos   33 Rho RhoGEF 
alpha-Spectrin FBgn0003470   [alpha]-Spec   33   
Rho1 FBgn0014020  Rho1  33 Rho Rho GTPase 
RhoGEF2 FBgn0023172  RhoGEF2  33 Rho RhoGEF 
RhoGAP1A FBgn0025836  RhoGAP1A  33 Rho RhoGAP 
RhoGAP5A FBgn0029778  RhoGAP5A  33 Rho RhoGAP 
RhoGAP16F FBgn0030893  RhoGAP16F  33 Rho RhoGAP 
RhoGAP18B FBgn0030986  RhoGAP18B  33 Rho RhoGAP 
RhoGEF4 FBgn0035761  RhoGEF4  33 Rho Rho GTPase 
CG7323 FBgn0036943   CG7323   33 Rho RhoGEF 
RhoGAP93B/Vilse FBgn0038853   RhoGAP93B   33 Rho RhoGAP 
RhoGAP102A FBgn0039898  RhoGAP102A  33 Rho RhoGAP 
CG30372 FBgn0050372  CG30372  33 Arf ArfGAP 
RabX4  FBgn0051118  RabX4  33 Rab Rab GTPase 
CdGAPr FBgn0051536  Cdep  33 Rho RhoGAP 
del-N-SIF_Arcp34dsRNA    33   
del-N-SIF_EnadsRNA    33   
dMemo overexpression    33   
Rab-protein 7 FBgn0015795  Rab7  34 Rab Rab GTPase 
peanut FBgn0013726  pnut  35   
CG7197 FBgn0035866  CG7197  36 Arf Arf GTPase 
Bj1 protein  FBgn0002638   Bj1   37   
CLIP-190 FBgn0020503   CLIP-190   37   
CG14507 FBgn0039655  CG14507  37   
Rab-protein 6 FBgn0015797  Rab6  38 Rab Rab GTPase 
CG8397 FBgn0034066  CG8397  39   
G protein gamma 1+A27 FBgn0004921   G[gamma]1   40   
abnormal spindle  FBgn0000140   asp   41   
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Table S9: dsRNA amplicons used in this study and predicted number of off targets.  See 
http://www.flyrnai.org for sequence information. 

 
Gene Symbol Amplicon 19 bp OT 

FBgn0010215   [alpha]-Cat   DRSC11917 0 

FBgn0003470   [alpha]-Spec   DRSC08704 0 

FBgn0004176   [gamma]Tub23C   DRSC00820 1 

FBgn0010097   [gamma]Tub37C   DRSC03535 1 

FBgn0000667   Actn   DRSC17724 1 

FBgn0036357  Aip1 DRSC09787 0 

FBgn0029105   alpha-catenin-related   DRSC04669 2 

FBgn0011747   Ank   DRSC17127 0 

FBgn0015589  Apc  DRSC14114 0 

FBgn0026598  Apc2  DRSC14115 0 

FBgn0031781  Arc-p20  DRSC02917 2 

FBgn0032859  Arc-p34  DRSC02113 0 

FBgn0013750  Arf51F  DRSC05921 0 

FBgn0010348   Arf79F   DRSC11606 0 

FBgn0000117   arm   DRSC18738 0 

FBgn0011744   Arp66B   DRSC09669 2 

FBgn0000140   asp   DRSC16903 0 

FBgn0025716   Bap55   DRSC07000 0 

FBgn0002638   Bj1   DRSC09684 2 

FBgn0026145   C3G   DRSC22329 463 

FBgn0028388   capt   DRSC03331 0 

FBgn0000256   capu   DRSC00434 0 

FBgn0010341   Cdc42   DRSC20228 2 

FBgn0051536  Cdep  DRSC12220 0 

FBgn0032821   CdGAPr   DRSC03289 0 

FBgn0039056  cenB1A  DRSC16923 1 

FBgn0028509  cenG1A  DRSC02538 1 

FBgn0028509  cenG1A  DRSC03505 0 

FBgn0032796   CG10188   DRSC02023 0 

FBgn0034577   CG10540   DRSC04080 0 

FBgn0036309  CG10971  DRSC09812 0 

FBgn0030530  CG11063  DRSC19367 3 

FBgn0031233   CG11490   DRSC00313 1 

FBgn0037375  CG1193  DRSC12184 4 

FBgn0037647  CG11968  DRSC14450 0 

FBgn0030180   CG12102   DRSC17804 0 

FBgn0030180   CG12102   DRSC22159 0 

FBgn0038304   CG12241   DRSC14481 1 
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FBgn0033184  CG12736  DRSC06163 0 

FBgn0031254  CG13692  DRSC00361 0 

FBgn0031691  CG14034  DRSC02359 0 

FBgn0040387   CG14045   DRSC18600 0 

FBgn0039655  CG14507  DRSC14866 2 

FBgn0025381  CG14782  DRSC18568 0 

FBgn0034396  CG15097  DRSC06526 1 

FBgn0034180  CG15609  DRSC06561 1 

FBgn0034194   CG15611   DRSC06563 0 

FBgn0034194   CG15611   DRSC06564 1 

FBgn0030013  CG1583  DRSC18094 1 

FBgn0033539  CG16728  DRSC06620 1 

FBgn0042175  CG18858  DRSC02703 0 

FBgn0029720  CG3009  DRSC18263 1 

FBgn0050115   CG30115   DRSC06748 0 

FBgn0050158  CG30158  DRSC04974 0 

FBgn0050158  CG30158  DRSC05012 0 

FBgn0050372  CG30372  DRSC06493 0 

FBgn0050372  CG30372  DRSC06830 0 

FBgn0050440   CG30440   DRSC04845 0 

FBgn0050456  CG30456  DRSC06565 2 

FBgn0051683  CG31683  DRSC02703 0 

FBgn0052030  CG32030  DRSC10545 0 

FBgn0052138   CG32138   DRSC10716 13 

FBgn0052627  CG32627  DRSC19404 0 

FBgn0035347  CG33232  DRSC08187 1 

FBgn0053167 CG33275   DRSC10866 0 

FBgn0027593  CG3799  DRSC09673 7 

FBgn0031405   CG4267   DRSC00647 1 

FBgn0039067  CG4448  DRSC22351 1 

FBgn0034230  CG4853  DRSC06898 1 

FBgn0032225  CG5022  DRSC02802 0 

FBgn0031906   CG5160   DRSC02821 1 

FBgn0032249   CG5337   DRSC02841 0 

FBgn0034158  CG5522  DRSC06941 1 

FBgn0038855  CG5745  DRSC15867 0 

FBgn0036555  CG6017  DRSC10570 0 

FBgn0037182  CG6838  DRSC11794 7 

FBgn0035866  CG7197  DRSC10785 3 

FBgn0036943   CG7323   DRSC29701 0 

FBgn0037074  CG7324  DRSC11820 0 

FBgn0036939  CG7365  DRSC10824 1 
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FBgn0031344   CG7420   DRSC00704 0 

FBgn0028538  CG7578  DRSC01893 0 

FBgn0032020  CG7787  DRSC03069 0 

FBgn0030877  CG7846  DRSC20059 1 

FBgn0038576  CG7940  DRSC16350 1 

FBgn0033349  CG8243  DRSC07122 0 

FBgn0033349  CG8243  DRSC22608 67 

FBgn0034066  CG8397  DRSC07162 0 

FBgn0033914  CG8479  DRSC07191 1 

FBgn0030842   CG8557   DRSC20111 2 

FBgn0033272  CG8707  DRSC07239 0 

FBgn0028473  CG8801  DRSC05954 0 

FBgn0031769   CG9135   DRSC03144 0 

FBgn0032926  CG9243  DRSC03164 0 

FBgn0032923  CG9248  DRSC03167 0 

FBgn0032485  CG9426  DRSC03219 0 

FBgn0030772   CG9699   DRSC20205 3 

FBgn0015372  chrw  DRSC04678 0 

FBgn0026084  cib  DRSC18660 0 

FBgn0020503   CLIP-190   DRSC03283 3 

FBgn0013765  cnn  DRSC07596 0 

FBgn0000340   cno   DRSC12374 814 

FBgn0000283   Cp190   DRSC16607 0 

FBgn0011570   cpb   DRSC00809 1 

FBgn0025864  Crag  DRSC18454 0 

FBgn0028869 CSN1a  DRSC01951 0 

FBgn0000384  cta  DRSC03769 0 

FBgn0011202   dia   DRSC03519 9 

FBgn0033739   Dyb   DRSC07208 1 

FBgn0000556   Ef1[alpha]48D   DRSC07421 1 

FBgn0034627   EfSec   DRSC04571 0 

FBgn0000578   ena   DRSC07610 10 

FBgn0028380  fal  DRSC00806 2 

FBgn0024238  Fim  DRSC20243 0 

FBgn0035739 form3   DRSC10297 2 

FBgn0004435  G[alpha]49B  DRSC07432 3 

FBgn0001105  G[beta]13F  DRSC20247 0 

FBgn0004623  G[beta]76C  DRSC11174 0 

FBgn0004921   G[gamma]1   DRSC07435 0 

FBgn0028433  G[gamma]30A  DRSC02715 0 

FBgn0033714  garz  DRSC07193 0 

FBgn0021873   Gef26   DRSC03231 0 
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FBgn0035574  Gef64C  DRSC08318 1 

FBgn0035574  Gef64C  DRSC08319 10 

FBgn0035574  Gef64C  DRSC36490 0 

FBgn0010225   Gel   DRSC12350 1 

FBgn0001104   G-i[alpha]65A   DRSC11168 1 

FBgn0001122   G-o[alpha]47A   DRSC07430 1 

FBgn0030685   Graf   DRSC20131 0 

FBgn0026431  Grip75  DRSC03337 0 

FBgn0026430   Grip84   DRSC20248 1 

FBgn0032960  Grp1  DRSC03694 0 

FBgn0001123  G-s[alpha]60A  DRSC04616 0 

FBgn0036545   GXIVsPLA2   DRSC10243 1 

FBgn0028371   jbug   DRSC11087 0 

FBgn0001301  kel  DRSC03554 0 

FBgn0001612   l(1)dd4   DRSC20249 0 

FBgn0020278   loco   DRSC16989 1 

FBgn0002567 ltd DRSC07522 3 

FBgn0029688  lva  DRSC18403 0 

FBgn0002645   Map205   DRSC16732 1 

FBgn0010342   Map60   DRSC07464 0 

FBgn0034282   Mapmodulin   DRSC06956 0 

FBgn0029870   Marf   DRSC18329 1 

FBgn0015513   mbc   DRSC16995 0 

FBgn0015513   mbc   DRSC36492 0 

FBgn0013951   Mer   DRSC20259 0 

FBgn0036333 MICAL   DRSC09829 0 

FBgn0021776  mira  DRSC16998 4 

FBgn0031885   Mnn1   DRSC03368 0 

FBgn0011661   Moe   DRSC18684 0 

FBgn0002789   Mp20   DRSC07474 2 

FBgn0010070 Msp-300  DRSC03370 0 

FBgn0027948   msps   DRSC17004 0 

FBgn0039532  Mtl  DRSC16751 0 

FBgn0015269  Nf1  DRSC16758 2 

FBgn0004625  norpA  DRSC18806 0 

FBgn0031437   p16-ARC   DRSC00730 0 

FBgn0026193  par-1  DRSC07660 0 

FBgn0029137   Patsas   DRSC02975 0 

FBgn0041789  Pax  DRSC02651 0 

FBgn0041789  Pax  DRSC02652 0 

FBgn0003041  pbl DRSC26301 0 

FBgn0003041  pbl DRSC33335 0 
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FBgn0003041  pbl DRSC33336 0 

FBgn0003041  pbl  DRSC11381 3 

FBgn0024314   Plap   DRSC00678 0 

FBgn0033075   Pld   DRSC04854 1 

FBgn0013726  pnut  DRSC07666 2 

FBgn0029903   pod1   DRSC18362 78 

FBgn0014009   Rab2   DRSC05017 1 

FBgn0037072  Rab26  DRSC11837 58 

FBgn0005586  Rab3  DRSC07523 0 

FBgn0031882  Rab30  DRSC03137 4 

FBgn0031090  Rab35  DRSC20691 1 

FBgn0027505   rab3-GAP   DRSC02001 0 

FBgn0014010  Rab5  DRSC00777 2 

FBgn0015797  Rab6  DRSC03404 2 

FBgn0015795  Rab7  DRSC16810 0 

FBgn0032782  Rab9  DRSC03281 0 

FBgn0015794  Rab-RP4  DRSC18702 1 

FBgn0030200  RabX2  DRSC18234 7 

FBgn0051118  RabX4  DRSC22189 1 

FBgn0010333   Rac1   DRSC08688 2 

FBgn0033881   RacGAP50C   DRSC07575 0 

FBgn0033881   RacGAP50C   DRSC33345 0 

FBgn0003346   RanGap   DRSC22003 1 

FBgn0036497  ran-like  DRSC10918 0 

FBgn0025806  Rap2l  DRSC04646 0 

FBgn0014015 Rapgap1  DRSC03406 0 

FBgn0027375   RecQ5   DRSC11266 0 

FBgn0041191   Rheb   DRSC12148 0 

FBgn0014020  Rho1  DRSC07530 0 

FBgn0036980  RhoBTB  DRSC11877 0 

FBgn0039883   RhoGAP100F   DRSC15409 0 

FBgn0039898  RhoGAP102A  DRSC17145 0 

FBgn0030808  RhoGAP15B  DRSC19924 1 

FBgn0030893  RhoGAP16F  DRSC20025 0 

FBgn0030986  RhoGAP18B  DRSC20047 0 

FBgn0031118   RhoGAP19D   DRSC20499 1 

FBgn0025836  RhoGAP1A  DRSC20649 0 

FBgn0034249  RhoGAP54D  DRSC06990 1 

FBgn0029778  RhoGAP5A  DRSC18294 4 

FBgn0036257  RhoGAP68F  DRSC10717 0 

FBgn0036518   RhoGAP71E   DRSC10232 1 

FBgn0038747  RhoGAP92B  DRSC15647 0 
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FBgn0038853   RhoGAP93B   DRSC15488 0 

FBgn0026375  RhoGAPp190  DRSC20099 2 

FBgn0023172  RhoGEF2  DRSC07531 1 

FBgn0023172  RhoGEF2  DRSC29373 0 

FBgn0035128  RhoGEF3  DRSC08266 0 

FBgn0035761  RhoGEF4  DRSC11011 1 

FBgn0014380   RhoL   DRSC16824 1 

FBgn0015803   rtGEF   DRSC22207 0 

FBgn0038947  sar1  DRSC17049 0 

FBgn0038947  sar1  DRSC22115 11 

FBgn0041781   SCAR   DRSC03426 0 

FBgn0037357  sec23  DRSC12387 0 

FBgn0014029  Septin-2 DRSC16855 0 

FBgn0026361   Septin-5 DRSC06843 1 

FBgn0003392   shi   DRSC20373 2 

FBgn0013733 shot DRSC25070 0 

FBgn0019652   SIF   DRSC22828 2 

FBgn0001961  Sop2  DRSC03438 1 

FBgn0001965   Sos   DRSC03439 5 

FBgn0011716  spdo  DRSC17062 1 

FBgn0003520   stau   DRSC07698 0 

FBgn0024277  trio  DRSC08527 78 

FBgn0011726   tsr   DRSC04718 0 

FBgn0040068  vav  DRSC24485 0 

FBgn0022960   vimar   DRSC05026 0 

FBgn0004049   yrt   DRSC16559 0 

 

References 
 
1. J. Lindblad, C. Wahlby, E. Bengtsson, A. Zaltsman, Cytometry A 57, 22 (Jan, 

2004). 
2. A. J. Ridley, A. Hall, Cell 70, 389 (Aug 7, 1992). 
3. A. J. Ridley, H. F. Paterson, C. L. Johnston, D. Diekmann, A. Hall, Cell 70, 401 

(Aug 7, 1992). 
4. R. Lin, S. Bagrodia, R. Cerione, D. Manor, Curr Biol 7, 794 (Oct 1, 1997). 
5. R. Lin, R. A. Cerione, D. Manor, J Biol Chem 274, 23633 (Aug 13, 1999). 
6. N. Fidyk, J. B. Wang, R. A. Cerione, Biochemistry 45, 7750 (Jun 27, 2006). 
7. K. L. Rossman, C. J. Der, J. Sondek, Nat Rev Mol Cell Biol 6, 167 (Feb, 2005). 
8. A. A. Kiger et al., J Biol 2, 27 (2003). 
9. K. Murayama et al., J Biol Chem  (Dec 26, 2006). 
10. M. Sone et al., Science 275, 543 (Jan 24, 1997). 
11. R. Marone et al., Nat Cell Biol 6, 515 (Jun, 2004). 

 64



12. I. Nishimura, Y. Yang, B. Lu, Cell 116, 671 (Mar 5, 2004). 
13. A. F. Baas et al., Embo J 22, 3062 (Jun 16, 2003). 
14. G. J. Bashaw, H. Hu, C. D. Nobes, C. S. Goodman, J Cell Biol 155, 1117 (Dec 

24, 2001). 
15. T. Schwabe, R. J. Bainton, R. D. Fetter, U. Heberlein, U. Gaul, Cell 123, 133 (Oct 

7, 2005). 
16. H. F. Paterson et al., J Cell Biol 111, 1001 (Sep, 1990). 
17. D. A. Harrison, R. Binari, T. S. Nahreini, M. Gilman, N. Perrimon, Embo J 14, 

2857 (Jun 15, 1995). 
18. K. R. Castleman, Digital Image Processing (Prentice Hall, Upper Saddle River, 

NJ, 1996), pp. 667. 
19. K. V. Mardia, Biometrika 57, 519 (Dec., 1970, 1970). 
20. P. Pudil, J. Novovicova, J. Kittler, Pattern Recognition Letters 15, 1119 (1994). 
21. M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc Natl Acad Sci U S A 

95, 14863 (Dec 8, 1998). 
22. M. Ashburner et al., Nat Genet 25, 25 (May, 2000). 
23. S. Parks, E. Wieschaus, Cell 64, 447 (Jan 25, 1991). 
24. K. K. Nikolaidou, K. Barrett, Curr Biol 14, 1822 (Oct 26, 2004). 
25. S. L. Rogers, U. Wiedemann, U. Hacker, C. Turck, R. D. Vale, Curr Biol 14, 

1827 (Oct 26, 2004). 
26. R. T. Premont et al., Proc Natl Acad Sci U S A 95, 14082 (Nov 24, 1998). 
27. E. E. Sander, J. P. ten Klooster, S. van Delft, R. A. van der Kammen, J. G. 

Collard, J Cell Biol 147, 1009 (Nov 29, 1999). 
28. J. P. Ten Klooster et al., Biochem J 397, 39 (Jul 1, 2006). 
29. M. Padash Barmchi, S. Rogers, U. Hacker, J Cell Biol 168, 575 (Feb 14, 2005). 
30. U. Hacker, N. Perrimon, Genes Dev 12, 274 (Jan 15, 1998). 
31. J. Grosshans et al., Development 132, 1009 (Mar, 2005). 
32. K. Barrett, M. Leptin, J. Settleman, Cell 91, 905 (Dec 26, 1997). 
 
 

 65


	 Index of Figures
	 Index of Tables
	 Supplemental Materials and Methods
	Protocols
	Cell Image Selection Software
	Feature Analysis
	Overview
	Feature Generation Process 
	Image Normalization
	Figures Illustrating Feature Analysis
	General Aspects of Features
	Feature Classes
	Breakdown of features into classes
	 Definitions of Individual Features

	Quantitative Morphological Analysis
	Fisher Linear Discriminants (FLDs)
	Neural Networks
	Quantitative Morphological Signatures (QMSes)
	Clustering and Replicability Analysis
	Enrichment Statistics


	Supplemental Text
	 Supplemental Tables
	References

