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This supplementary document presents two extensions of the mathematical model, as 

well as a more detailed description of the Drosophila experimental data. In addition, we 

present some clarifications on the graph model and a detailed methods section. 
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1. Graph Model: Derivation in the Presence of Boundary Conditions 

 
In the paper we approximate st, the average number of sides per cell at generation t as: 

st  2et / ft = 2(et-1 + 3ft-1) / 2ft-1 = (st-1 / 2) + 3 (1) 

We solve this recurrence to get: 

 

st  6 + 2
-t
(s0 – 6)   (2) 

 
However, this equation for st is only an upper bound approximation because it double 

counts edges on the boundary of the epithelium. If we account for boundary cells, then 

the exact equation for st is: 

    st = (2et - et
bd

) / ft = 6 + 2
-t
(s0 – 6) - et

bd
 / ft  (3) 

where et
bd

 is the number of boundary edges and ft is the number of cells at generation t. 

This basically is the same as equation (1) but corrects for the over counted edges.  

In a 2D epithelium comprised of similarly-sized cells, the number of boundary edges 

approximately measures the perimeter and the number of cells approximately measures 

area. Hence et
bd

 ~ O(r) and ft ~ O(r
2
), where r is the radius of the epithelium (in cells). 

The third term in equation (3) is therefore O(1/r) and this approaches zero as t gets large 

and the epithelium gets large. This implies that the average number of neighbours per 



cell will approach six from below.  In fact, the convergence rate is exponential since ft ~ 

O(2
t
) and et

bd
 ~ O( ft). [Note that this would not be true for a strip of cells that proliferate 

in a single direction since then et
bd

 ~ O(ft).]  

Thus, the original approximate formula for st in (2) is still asymptotically correct. For a 

roughly circular region of 200 cells, the difference between equations (2) and (3) is less 

than 4% and for 30,000 cells it is less than 0.4%. Therefore equation (2) is a good 

approximation for the sizes of epithelial regions we sample, and a very good 

approximation for the imaginal disc itself, which eventually has well over 30,000 cells.  

An important aspect of this analysis is that it is independent of cleavage plane orientation 

(condition 6), and is instead a deeper implication of the formation of mostly tricellular 

junctions (vertices of degree 3). Notice however that this result by itself is not sufficient 

to explain the predominance of hexagons or even their existence– for example, a planar 

graph with equal numbers of octagons and quadrilaterals has only tricellular junctions 

and an average of six neighbours, but no hexagons.  

2. Extended Markov Model: Error in Interface Formation 

 

One of the discrepancies between the mathematically predicted distribution and the 

experimentally observed distribution is the absence of 4-sided cells. The Markov model 

allows the creation of 4-sided cells through division but assumes that at the end of a 

round of division each cell has gained exactly one edge. As a result all 4-sided cells 

become 5-sided in each round, after gaining edges from neighbors, and thus the model 

predicts no 4-sided cells. In our experimental data, a small fraction of 4-sided cells are 

observed (2-3%). There are several potential factors that can explain the difference 

between the prediction and observation: 

 

 

1. The experimental data does not represent the end of a round of division, and 

therefore not all cells will have gained a neighbor in the current round. Thus one 

should expect to see some 4-sided cells that have been created through splitting 

but not gained an edge from a neighbor yet. 

2. In the Markov model, we assume that each cell gains exactly one edge. However 

in reality a cell may gain more or less. More precisely, the number of sides added 

via neighbor division is a random variable obeying a particular distribution. We 

prove that this distribution has a mean of exactly 1. By using the shift matrix S we 

are making the mean-field approximation, i.e. that this mean is “good enough” to 

calculate the equilibrium distribution. Our experiments with aged and mitotic 

cells suggest that the mean-field approximation is reasonable. This approximation 

likely adds a small amount of error to the prediction for all cell types, but is most 

obvious for 4-sided cells.  

3. Our model assumes that all divisions result in the formation of a new interface 

between the daughters (condition 3). However, it is possible that this fails with 

some small rate as shown in our data on the occurrence of non-interface forming 

clones (Text Fig. 1). While we cannot easily measure the exact rate of failure, we 



can model the effect of different error rates in interface formation, as shown 

below 

 

Experimental data on interface formation 

 

In the text we define three types of cell division, Type I, II and III (Text Fig. 1). Type I is 

a division that results in the formation of a normal interface between daughters. Type II 

division results in two daughters but no new interface is formed so they are connected 

only at a vertex. Type III similarly has two daughters that fail to form a new interface but 

also get separated.  

 

In our experimental data on two-cell clones, 94% of the divisions are unambiguously 

Type I. However this is a conservative estimate, and the remaining cases are not 

unambiguously Type II/III. This is primarily because it is difficult to distinguish Type II 

from cytokinesis that has not yet resolved into an interface. More importantly, it is also 

difficult to distinguish a Type III division from two independent clone events that occur 

within a 1-cell radius (which was our scoring criteria for Type III). For these 

experiments, clones were tested within a 10-hour period, during which they are likely to 

divide once.  However, some cells may not divide and some cell clones may occur close 

to each other. Therefore there are a small number of single cells and larger clones. If we 

consider only two-cell clones, then the fraction of non-Type I events is < 3%, whereas 

using all clones results in 6% non-Type I events. Including the larger clones increases the 

likelihood that independent events are mistaken for Type III divisions. In summary, the 

failure rate is difficult to measure unambiguously, however we expect it to be less than 

6% and most likely around 2%. 

 

Modeling error in interface formation 

 

While our Markov model is parameterless, it is possible to introduce parameters to 

investigate failures in the conditions underlying the model. We introduce a parameter � 

equal to the probability that a cell divides without forming a new interface (i.e. Type II or 

III). Hence with probability (1-�) the cell divides normally, forming an interface between 

daughter cells (i.e. Type I). Our experimental data suggests that � is between 2-6%. 

 

We can model this process as a Markov Chain with the following division matrix: 

 

IIIIII
PPP /)1( μμμ +=  

 

where PI is the normalized Pascal Matrix defined in the text for Type I divisions (Text 

Box 1) and PII/III is a new matrix that accounts for Type II/III divisions wherein a new 

interface is not formed. If the two daughters fail to form a new interface then they end up 

with one less side each. Thus the number of sides of a daughter in a non-interface 

forming division is just one less than an interface-forming one.  

 



PII/III(i,j) = PI(i,j+1) for i >= 4.  

 

Thus PII/III looks like PI, but shifted one column to the left: 

 

(unnormalized) 

15101051

14641

1331

121

11

1

1

/
=

IIIII
P  

 

Notice that the new Markov Chain is defined on the state space {3,4,5,6,…} because the 

division of a 4-sided cell can result in the formation of 3-sided daughters when interface 

formation fails. The division transition matrices PI  and PII/III have the extra provision that 

a 3-sided cell divides to form two 3-sided cells, to avoid the degenerate case of a 2-sided 

daughter cell.  

 

Modeling only Type II division effects:  In Type II divisions, the two neighboring cells 

that are cut by the cleavage plane will gain one side each, regardless of whether a new 

interface is formed or not.  Thus the shift matrix does not change, and S� = SI where SI is 

simply the standard shift matrix from the text. 

 

The overall transition matrix is T� = P�S� and by the Perron-Frobenius theorem the 

overall process p
(t+1)

 = p
(t)

 T� converges to an equilibrium distribution p
*
 where p

*
 is the 

principal eigenvector of T�. Using MATLAB, we calculate p*(�) for several values of � 

(Supplemental Figure 1). For small �, as � increases, p4
*
 and p5

*
 increase while p6

*
, p7

*
, 

p8
*
, p9

*
 decrease. This leads to a decrease in average sidedness i.e. s

*
(�) < 6 for � > 0. 

This is expected since a higher � implies less new sides are formed and thus an overall 

decrease in sidedness. At the extreme when �=1, i.e. an epithelium with purely non-

interface forming divisions, all cells eventually become 4-sided. 

 

This analysis shows that, for small values of μ that are consistent with experimental 

estimates, the equilibrium polygon distribution E is robust (Supplementary Fig. 1a). 

 

Modeling Type III division effects: In the case of Type III divisions, neighbouring cells 

gain two edges each, rather than a single edge. Thus we must modify the shift matrix to 

allow +2 sides to the neighboring cells for such divisions.  Let pT = probability that a cell 

has division type T, where T is one of {I,II,III}. A fraction (pI + pII) of cells contribute +1 

side to each of their neighbors that are cut by the cleavage-plane in Type I/II divisions. A 

fraction (pIII ) of cells contribute +2 to each such neighbor (Text Fig. 1). Hence, the new 

shift matrix is: 

 
2)(),,( IIIIIIIIIIIIII SpSpppppS ++=  



 

where SI is the original shift matrix from the paper [Text Box 1].  

 

The division transition matrix P(pI, pII, pIII)  is just P� with � = (1-pI).  Using P(pI, pII, 

pIII)   and S(pI, pII, pIII), we can calculate p* for several values of pI, pII, and pIII where � = 

pII + pIII = 6%. Once again, we find that the equilibrium distribution E remains robust to 

small errors, whether Type II or Type III (Supplementary Fig. 1b). 

In summary, 

1. For an error rate of � = 2-6%, the equilibrium distribution remains largely 

unaffected. This is true for both Type II and III errors. Thus the system is robust 

to small errors in interface formation. 

2. Cases where � = 6% predict that a small percentage of 4-sided cells (~2%) will 

be formed, which is consistent with observed percentages of 4-sided cells (~3%). 

3. Lastly, this analysis suggests how one can create parameterized versions of the 

model to investigate small deviations from the idealized conditions. 

 



 
 

 

 

 
 

 

                            
 

Supplemental Figure 1.  

(a) Equilibrium polygon distribution (E) as a function of the rate of non-interface-

forming divisions, �. As � increases, the frequency of 4- and 5-sided cells increases 

while 6-, and higher-sided cells decrease implying that the overall mean decreases. For 

small rates of face-formation error, E is robust.  

(b) Equilibrium polygon distribution (E) as a function of the rate of Type II and Type III 

non-face-forming divisions (pII and pIII), for a fixed total error rate �=6%.  E is robust to 

small rates of Type II/III face formation errors 



3. Extended Markov Model: Alternate Cleavage Plane Models 

 

Here we examine alternate models of cleavage plane choice that illustrate how the 

transition probabilities in the division matrix P affect the final equilibrium distribution p
*
. 

In particular, we show that changes in P lead to noticeable changes in p
*
. 

 

Uniformly at random sides: Consider a division model where each cell “chooses” two 

non-adjacent sides uniformly at random. More specifically (1) choose side s1 at random 

from all n sides of a cell (2) choose side s2 uniformly at random from the n-3 remaining 

non-adjacent sides (3) Create a cleavage plane between s1 and s2. This model has the 

following division transition matrix: 

 

(unnormalized)

11111

1111

111

11

1

=
U

P  

 

Note that PU only differs from the Pascal matrix P0 in rows 3 and higher. The shift matrix 

SU remains the same as the standard shift matrix S0. Using MATLAB, we calculate the 

equilibrium distribution for the overall Markov process with transition matrix TU = PUSU 

and get p* = [ 0.3679    0.3679    0.1839    0.0613    0.0153    0.0031    0.0006] 

(Supplemental Fig. 2; uniform).  

 

Randomly distributed junctions, allowing 3-sided cells. In this case we modify the 

original division model (Text Box 1) to allow the case where a 3-sided daughter can be 

formed. We still disallow 2-sided cells (which could occur if no junction falls on one side 

of the cleavage plane). In this case the transition probability is defined as PT(i,j) = 

Comb(i-2, j-3) where Comb(n,k) = n!/k!(n-k)!, the number of k-subsets of a set of n 

elements. We can calculate the equilibrium distribution for the overall Markov process 

with transition matrix TT = PTST and get p
*
 = [0.0000 0.0835    0.2682    0.3360    0.2144    

0.0782    0.0197] (Supplementary Fig. 2; binomial with triangles). This shows that the 

condition disallowing 3-sided cells is important, even though we do not yet know the 

specific mechanisms that prevent it.  

 

Equal junction split. Another simple model of division is equal junction split where a 

cell always divides its tricellular junctions as equally as possible between daughters. For 

even-sided cells PE(i,i/2) = 1 and for odd-sided cells PE(i,(i-1)/2) = PE(i,(i+1)/2) = 1/2. 

For example, a 6-sided cell gives 3 tricellular junctions to each daughter while a 7-sided 

cell gives one daughter 3 tricellular junctions and the other daughter 4 tricellular 

junctions. This system is predicted to converge to a population of all hexagons. In reality, 

neighbors can gain more or less than one side, and therefore it is unlikely that one will 

observe a perfect hexagonal lattice. However the system is driven to a much tighter 

distribution than the previous models.  

 



From Supplementary Fig. 2, it is clear that for each different model, the equilibrium 

distributions deviates significantly from p0
*
 and thus the Markov model can discriminate 

between these cases. Notice that all the systems must have a mean of 6. However, which 

cell type is predominant and what percentage of predominant cell type is observed can 

vary considerably. Importantly, while we cannot prove that no other division mechanism 

will generate p0
*
, the distributions may indicate which division mechanisms are 

insufficient to generate p0
*
. Thus in cases where we cannot observe the division process 

directly, we may be able to gain some insight into potential cell-level mechanisms. 

 

 

 

 

 

                          
 

 

Supplemental Figure 2. Equilibrium polygon distribution (E) as a function of cleavage 

plane choice. Allowing 3-sided cells increases the variance and decreases the skew of E. 

Choosing cleavage planes uniformly at random, as opposed to binomially, increases the 

variance by increasing the frequency of 5-sided cells while decreasing the frequency of 6-

sided cells. Thus E is sensitive to changes in cleavage plane choice. 

 



4. Imaginal Disc Polygonal Cell Counts 

 

In the paper we present average and standard deviation results from counting the 

polygonal cell types in fixed Drosophila imaginal discs. Here we present the data from 

the individual imaginal discs.  The data is from twelve imaginal discs at the third instar 

larval stage, collected on two separate days. For each disc we examined an arbitrary 

region of ~100-300 cells in the presumptive blade region (excluding the wing margin 

territory).  

 

The scoring of late-third instar imaginal disc cells was performed by hand on high-

resolution digital images (raw data in Supplementary Table 1). While scoring polygon 

class for most cells was unambiguous, some errors in counting are likely. Images were 

ambiguous for a number of reasons: 1) Focal plane effects due to which the septate 

junction was not clearly resolved; 2) Variation in the length of cell sides; and 3) Cells 

adjoining mitotic cells were distorted, making it difficult to discern cell contacts.    

 

Despite these caveats, the scored images showed a remarkably consistent distribution 

with a small deviation from the average (Supplementary Fig. 3). Importantly, each disc 

exhibited similar properties: no cells with less than four sides or more than nine sides 

were observed, the median cell sidedness was six, and the percentage of seven-sided cells 

was always lower than that of five-sided cells. 



 

 

 
 

Supplemental Figure 3. Empirically observed polygon distributions for 12 imaginal 

discs in the late third instar stage (100-200 cells per disc). Note that disc-to-disc 

variations in the distribution are small and do not affect the overall characteristic shape. 



 
Polygon 

distribution/ 

disc 3 4 5 6 7 8 9 total cells 

         

1 0 3.11 29.81 44.72 16.15 6.21 0 161 

2 0 0 28.44 44.95 24.77 1.83 0 109 

3 0 2.86 26.86 48.57 17.14 4 0.57 175 

4 0 1.62 25.95 48.65 21.62 2.16 0 185 

5 0 0 24.58 49.15 20.34 5.93 0 118 

6 0 3.98 30.11 40.91 20.45 3.98 0.57 176 

7 0 4.09 28.07 47.95 16.37 3.51 0 171 

8 0 2.65 29.65 43.81 21.24 2.65 0 226 

9 0 2.46 29.1 43.85 22.54 2.05 0 244 

10 0 5.31 25.66 44.25 22.12 2.65 0 113 

11 0 3.21 26.2 46.53 21.39 2.67 0 187 

12 0 4.23 28.01 46.25 18.89 2.28 0.33 307 

         

         

average 0 2.79 27.7 45.8 20.25 3.33 0.12 2172 

std. dev. 0 1.55 1.75 2.39 2.53 1.4 0.22  

max. 0 5.31 30.11 49.15 24.77 6.21 0.57  

min. 0 0 24.58 40.91 16.15 1.83 0  

Markov 

model 0 0 28.9 46.4 20.9 3.6 0  

         

 

 

Supplemental Table 1.  Frequency counts of data shown in Supplemental Figure 3, 

presented as polygon distributions per disc for twelve imaginal discs. No 3-sided or 10-

sided cells are observed. The median is 6 and the frequency of 5-sided cells is greater 

than 7-sided cells for all discs. Summary statistics per polygon class and overall are 

shown. 



5.  Detailed Methods  

Confocal Timelapse  

Imaginal discs were dissected in droplets of Ringer’s solution on siliconized slides and 

immediately transferred into culture media on standard glass slides.  Strips of double-

stick tape were employed as spacers to create a shallow chamber between the coverslip 

and the specimen. For short duration ex vivo culture of imaginal discs, it was possible to 

track mitotic cell junction dynamics in a variety of media.  We used standard Ringer’s 

Solution (130 mM NaCl, 5mM KCl, 1.5 mM MgCl2) as well as Shields and Sang M3 

Insect Media (Sigma-Aldrich; modified with 10% Fetal Bovine Serum, 10 mU/L insulin, 

10U/mL penicillin, 10 ug/mL streptomycin) to obtain movies over culture periods of 1.5-

2 hours at maximum. Movies were collected and processed using the Leica TCS SP2 

AOBS Confocal Microscope system. 

Animal Husbandry and Imaging 

Drosophila stocks were maintained using standard methods at 25
o
C.  GFP-expressing 

clones were induced with a 15-minute heat shock at 37
o
C followed by a 10-hour recovery 

period. For immunocytochemistry and Phalloidin staining, imaginal discs were fixed in 

4% paraformaldehyde in PBS at room temperature for 30-40 minutes.  All subsequent 

steps were performed according to standard protocols. Phalloidin-546 (Molecular Probes) 

was used at a dilution of 1:250, Mouse anti-Discs Large (Developmental Studies 

Hybridoma Bank) was used at 1:500.  Secondary antibodies were Goat anti-Mouse Alexa 

647 or Goat anti-Rabbit Alexa 647 (1:500; Molecular Probes). Polygon counts were 

taken from nine late third instar larval imaginal discs.  Xenopus tadpoles, approximately 

stage 44-50
27

, were obtained live (Carolina Biological Supply) and immediately fixed in 

cold 4% paraformaldehyde in PBS. Tails were removed and stained overnight in 1:200 

Phalloidin-546 at 4
o
C in PBT and then rinsed 3X in PBT at room temperature for 2 hours. 

For examination, the epidermis was dissected away from the muscle prior to mounting.  

Counts were taken from five samples.  Wild-caught Hydra populations (Carolina 

Biological Supply) were maintained in Poland Spring Water in plastic dishes on a diet of 

freshly-hatched brine shrimp nauplii (Carolina Biological Supply).  For fixation, animals 

were permitted to engorge themselves with shrimp larvae and then fixed whole with 4% 

paraformaldehyde in Poland Spring Water.   Staining was overnight at 4
o
C in a 1:200 

dilution of Phalloidin-546 in PBT, followed by 3 rinses in PBT over 2 hours at room 

temperature.  Polygon counts were taken from five samples. All specimens were mounted 

in 70% glycerol/PBS using spacers as appropriate.  Images were collected on a Leica 

TCS SP2 AOBS Confocal Microscope system and processed using Adobe Photoshop 7.0 

software. 

 

Clonal analysis and polygon distributions   

 

Clones were induced in flies of the genotype: yw hs-flp
122

; Actin5c > >Gal4, UAS-

GFP/+.  Polygon distributions were determined by eye in confocal micrographs; error 

was estimated as the average standard deviation between counts from different images. 



Empirically, it was not possible to systematically account for certain rare but inevitable 

irregularities in real epithelia, such as occasional 4-way point junctions and dying or 

grossly misshapen cells.  Indeed, such irregularities were most common in Xenopus 

epidermis, which deviated the most significantly from expectations. There are clearly 

regulative mechanisms and spatial irregularities in epithelia not accounted for by the 

present study, and overall polygon counts must therefore be taken as approximations that 

illustrate general design principles of default-state epithelial monolayers.  The raw counts 

for cells of different sidedness are as follows: Drosophila disc columnar epithelium (4- 64; 

5- 606; 6- 993; 7- 437; 8- 69; 9- 3). Hydra (4- 16; 5- 159; 6- 278; 7- 125; 8- 23; 9- 1).  

Xenopus (3- 2; 4- 40; 5- 305; 6- 451; 7- 191; 8- 52; 9- 8; 10- 2). Drosophila peripodial 

controls (4- 11; 5- 106; 6-198; 7-86; 8- 10; 9- 0).  Drosophila peripodial string clones 

(only cells on the clone periphery were scored: 3- 3; 4- 27; 5- 134; 6-105; 7-21; 8- 5; 9- 

0). 

 

Markov Chain convergence and equilibrium distribution calculation  

 

The Perron-Frobenius Theorem in Markov Chain theory guarantees the convergence of 

p
(t)

 to a unique stable equilibrium distribution p
*
 independent of the initial distribution 

p
(0)

, provided that the chain is irreducible and aperiodic.  Note that in our case all 

probability mass leaves state 4 of our Markov chain in 1 iteration (Text Fig. 2). Hence the 

Markov chain is technically defined only on states 5 and higher, with state 4 as a transient 

state. Restricted to this smaller state set, it is both irreducible and aperiodic and thus the 

theorem guarantees the existence of a unique stable equilibrium
23

. Furthermore the 

equilibrium distribution is the first eigenvector of the transition matrix T, and the second 

eigenvalue determines the rate of convergence. We truncated the infinite transition matrix 

T down to 20 rows and 20 columns and then used Matlab to calculate p
*
 as the principal 

eigenvector of T. We also used Matlab to compute �2, the second largest eigenvalue of T 

as 0.5, which implies that the topology approaches the predicted equilibrium distribution 

exponentially fast.  

 

 

 

 


