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Abstract

With the development of genome-wide RNAI libraries, it is now possible to screen for novel components of mitogen-activated protein
kinase (MAPK) pathways in cell culture. Although genetic dissection in model organisms and biochemical approaches in mammalian
cells have been successful in identifying the core signaling cassettes of these pathways, high-throughput assays can yield unbiased, func-
tional genomic insight into pathway regulation. We describe general high-throughput approaches to assaying MAPK signaling and the
receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway in particular using a phospho-specific antibody-
based readout of pathway activity. We also provide examples of secondary validation screens and methods for managing large datasets

for future in vivo functional characterization.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Signaling through receptor tyrosine kinases (RTKs)
plays highly conserved roles in metazoans, controlling fate
determination, differentiation, proliferation, survival,
migration, and growth [1,2]. Although RTKs activate mul-
tiple downstream pathways, one particularly well-studied
and evolutionarily conserved pathway is that of the extra-
cellular signal-regulated kinases (ERKs), members of the
mitogen-activated protein kinase (MAPK) superfamily,
which also include the stress-activated protein kinases
(SAPKs) such as c-Jun N-terminal kinase (JNK) and p38
[3,4]. The broad importance of RTK/ERK signaling is
highlighted by the well-documented pathway dysregulation
in human disease, most notably cancer. Mutations in multi-
ple RTKSs have been implicated in a variety of cancers, such
as the epidermal growth factor receptor family members in
breast and lung cancers [5]. Thirty percent of all solid
tumors have mutations in Ras or Raf, including up to 90%
of pancreatic adenocarcinomas [6].
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Given the recent success of targeted therapies in cancer
drug discovery [7], there is considerable interest in the dis-
covery of novel components of RTK/ERK signaling. Our
current knowledge of RTK/ERK signaling is the synthesis
of decades of dissection in model systems such as analysis
of the yeast MAPK mating-type response, vulva formation
in Caenorhabditis elegans, sensitized genetic screens for
morphogenesis defects in Drosophila, and biochemical and
cell biology in mammalian tissue culture. Subsequent to the
characterization of the core signaling cascade culminating
in ERK activation, recent research has focused on the role
of feedback regulation and signaling dynamics in control-
ling output [8-12], placing the core cassette within a larger
network of regulatory proteins.

Faithful recreation of endogenous cell circuits depends
on the identification of all components of the pathways.
Discovery of novel components of this pathway and those
of the surrounding regulatory network requires the devel-
opment of new technologies, as many genes may not have
been discovered through traditional genetic techniques due
to pleiotropy of genes with functions in multiple pathways,
mutational bias, redundancy, and/or the requirement for
visible phenotypes. We have previously shown that
genome-wide RNAIi screens in cell culture can identify
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novel members of signaling pathways in an unbiased man-
ner [13-15]. Building upon this work, we first outline gen-
eral assays for dissection of the RTK/ERK signaling
pathway. Second, we describe in detail a phospho-specific
antibody method we have used to discover novel genes con-
trolling ERK activation in a quantitative, loss-of-function
assay (A.F. and N.P., submitted). These methods are gener-
ally applicable to other MAPK RNAI screens.

2. General considerations for high-throughput RTK/ERK
assay development

Assays for genetic dissection of RTK/ERK signaling
depend on knowledge of the core signaling cassette to
measure activities of proteins at particular points during
signal propagation. A summary of potential assays for
pathway measurement is presented in Fig. 1. Approaches
for elucidating signaling pathways in general by RNAi
screening in mammalian cells has been recently reviewed
[16]. Theoretically, more proximal assays measuring
pathway activity near the activated RTK would identify
fewer regulators than more distal assays and may miss
components of input branches from other receptors.
However, distal pathway readouts (e.g., transcriptional
reporters or morphological outputs) may integrate more
pathways than is desirable, only some of which may be
known, challenging outcome attribution to the upstream
MAPK pathway. Analysis of signal transduction cas-
cades has traditionally relied on the use of transcrip-
tional reporters, e.g., [13—15]. Although many effectors of
RTK/ERK signaling have been identified, well-known

transcriptional targets of this pathway include members
of the ETS-domain-containing class of transcription fac-
tors [17]. A multimerized ETS-binding site-based tran-
scriptional reporter has been successfully used in
Drosophila for readout of this pathway [18,19] and may
be a viable HTS RNAI assay. However, transcriptional
reporters that rely on such artificial, multimerized motifs
may not faithfully report output in all cell types or may
integrate additional pathways during transcriptional
activation; in addition, the quantitative relationship
between endogenous pathway activity and output of
these reporters is unclear. More generally, microarray-
based functional genomic analysis, based on responses to
gain or loss-of-function of specific pathway components,
can yield downstream effectors. For RTK/ERK signaling
in Drosophila, this approach has been successfully
applied to measure changes in transcription in vivo in
response to Ras¥!? expression in hemocytes [20] and
gain- and loss-of-function alleles of RTK/ERK pathway
members in the Drosophila ovary [21].

More proximal assays may rely on microscopy (“high-
content screening,” HCS) or plate-reader (PR) assays of
specific signaling events. Although PR assays are usually
faster than HCS and simplify analysis by reducing pathway
activity to a single number representing a population aver-
age, HCS can capture much more information about a
pathway [22]. HCS assays can be multiplexed to follow, for
example, both protein localization and abundance, and can
capture many parameters of pathway modulation such as
cell-to-cell variability in signal transduction [23]. On the
other hand, HCS automated image analysis, feature
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Adaptor binding (FRET-HCS/PR)
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Fig. 1. Potential assays for high-throughput analysis of RTK/ERK signaling. We show for reference the canonical RTK/ERK signaling cascade in Dro-
sophila, from ligand binding and RTK activation, to ERK phosphorylation (see review by [2]). For most proteins in the cascade, reagents have been devel-
oped that can be used in HTS assays in cell culture. Many assays, such as protein phosphorylation, may be assayed by either PR or HCS. In addition,
pathway outputs, such as transcriptional activation or phenotypic changes, could be used as screen assays. FRET, fluorescence resonance energy transfer;

HCS, high-content microscopy-based screening; PR, plate-reader.
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extraction, and data storage can be challenging and is
undergoing rapid development.

Here, we describe specifically an assay based on acti-
vation of ERK using phospho-specific antibodies. Many
other activation-state-specific reagents have been devel-
oped, such as antibodies to phosphorylated RTKs them-
selves, activating and inhibitory sites on Raf, and
phosphorylated MEK. Staining intensity could be ana-
lyzed either using a plate-reader, which reports a single
intensity measurement in each well, or HCS, which cap-
tures the immunofluorescence image. More exotic assays,
based on fluorescence resonance energy transfer (FRET)
detecting recruitment of adaptor proteins to receptors
[24] or Ras activation [25] are also feasible. Other HCS
assays such as nuclear—cytoplasmic shuttling of ERK
[26], receptor internalization [27], or Ras localization [28]
can be combined with phospho-specific antibody
reagents to yield multiple variables that may give further
insight into the function of the given gene. Finally, down-
stream phenotypic outputs of MAPK pathway activation
could also identify novel genes. For example, a previous
HCS screen focusing on cell morphology identified RTK/
ERK signaling components including Ras, Raf, and Ksr
[22]; other genes isolated in this screen with similar pat-
terns of morphological changes may also be components
of this pathway. Oncogene-mediated growth arrest or
transformation phenotypes have also been used as assays
in RNAi HTS, uncovering components of MAPK
pathways [29,30].

3. A high-throughput assay for RTK/ERK signaling in
Drosophila cells

Given the pivotal role of ERKs as RTK effectors and
the commercial availability of well-characterized anti-
bodies directed towards highly conserved, dually phos-
phorylated, active ERK1/2 (dpERK), we developed a
high-throughput assay for analyzing dpERK levels in
Drosophila cells (A.F. and N.P., submitted). ERK activa-
tion is a common feature of RTK activation for both
mammalian receptors and their Drosophila orthologs. In
Drosophila cells, elevation of dpERK following ligand
stimulus has been observed following insulin activation
of insulin receptor (InR) [31], epidermal growth factor
(EGF) ligand Spitz activation of Drosophila EGFR [32],
and Pvf ligand activation of the PDGF/VEGF homolog
receptor (PVR) [33].

Our assay was adapted from traditional immunohisto-
chemical techniques (outlined in Fig. 2). More general pro-
cedures for RNAi HTS, particularly using transcriptional
reporters, have been previously published [34]. Advantages
of RNAi HTS for MAPK screening in Drosophila include
(1) the broad conservation of the RTK/ERK signaling cas-
sette between Drosophila and mammals, (2) the advantages
of gene discovery in Drosophila due to reduced gene redun-
dancy, and (3) the ease of genetic manipulation in both
Drosophila cell culture through RNAIi technology and
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Fig. 2. Outline of phospho-specific antibody HTS. Flowchart for a phos-
pho-specific antibody-based RNAI screening procedure detecting dually
phosphorylated, active ERK, normalized to its YFP tag, as described in
the text.

in vivo through mutational and transgenic techniques. All
of the principles we describe can easily be applied to mam-
malian RNAI screening platforms.

3.1. Assay optimization

We chose cell number, length of soaking in serum-free
medium, length of incubation, and reagent volumes to
maximize signal:noise and cell viability. Although there is
baseline ERK activation in S2 cells [33], increasing sig-
nal:noise by stimulating the pathway improves the dynamic
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range and thus the sensitivity to perturbations such as by
dsRNAs targeting genes involved in pathway regulation.
As S2 cells endogenously express the Drosophila insulin
receptor and can be easily activated by commercially avail-
able insulin [31], we used this ligand to stimulate the path-
way. As dpERK levels peak at 10min following insulin
stimulation, we measured pathway activity at this time
point as well as at baseline. Dynamic range and sensitivity
of the assay were optimized using dsRNAs targeting
known components of the RTK/ERK pathway such as InR
itself, Ras, Raf, PTP-ER, and MEK. In general, this
phospho-specific antibody approach led to a dynamic
range of 30-150% normalized dpERK compared to control
dsRNAs; this range is much narrower than enzyme-based
transcriptional reporters but may more faithfully report
endogenous signal intensity.

3.2. Cell seeding

We chose the S2 sub-line S2R + because it is adherent and
thus has less cell loss during plate manipulations. Drosophila
S2R+ cells (4 x 10*) were seeded in 20 pL serum-free medium
in black, clear-bottom 384-well plates (Corning) with the
DRSC dsRNA collection suspended in 5uL water per well
and spun for 1’ at 1200 rpm. After 45min, 20 uL of medium
with 20% serum (2x) was added and the plates spun again.
Plates were incubated for four days at 25°C. We placed the
plates in humidified secondary containers in humidified incu-
bators to reduce evaporation, which can lead to “edge
effects” and differential growth by well location.

3.3. Detection

Following incubation, the plates were stimulated by
adding 10 uL phosphate-buffered saline (PBS) containing
insulin (Sigma), to a 25pug/mL final concentration. After
10 min, the stimulated and unstimulated cells were fixed in
formaldehyde at 4% final concentration in 10pL
PBS+0.1% Triton (PBST). As primary and secondary
screening often requires parallel processing of many plates
at a time, we manipulated the plates such that they were all
stimulated and fixed in the same order to ensure uniform
activation time. Following a 10 min fixation, the cells were
spun for 1’ at 1200rpm and washed twice with 50-80 uL.
PBST for a total of at least 30 min of washing. After each
wash step and all subsequent steps the plates were spun for
1" at 1200 rpm.

After the second wash step, the cells were incubated in
10 uL PBST containing 3% bovine serum albumin (BSA) and
750ng/mL dpERK antibody (Cell Signaling Technology). In
order to reduce the number of manipulations required, we
fluorescently conjugated the purified mouse monoclonal
antibodies using the Alexa Fluor 647 Protein Labeling Kit
(Molecular Probes). Following overnight incubation at 4 °C,
the cells were again washed twice with 50-80uL. PBST and
staining intensity read on a fluorescent plate-reader (Analyst
GT by Molecular Devices) in 30 uL. PBST.

Many dsRNAs in the DRSC collection reduce cell via-
bility [35]. A normalization vector is therefore required to
account for general effects on cell number rather than regu-
latory changes to the relative phosphorylation status of
ERK. The cell line we used for primary screening stably
expressed Drosophila ERK tagged with YFP; this overex-
pression increased signal:noise of the assay in general and
provided a rapid internal normalization for total ERK. For
secondary screening, however, we used wild-type cells and
normalized with total ERK antibodies. For detection, we
measured YFP fluorescence using the following filters
(Chroma): excitation 500/20 nm, emission 535/30nm, and a
445/520nm double dichroic. For Alexa 647 detection, we
used excitation 615/40nm, emission 650LP, and the 445/
520nm double dichroic, which contains a harmonic win-
dow in the far red range. Excitation time was 100 ms/well.
Although the YFP channel of the fixed cells provides an
approximation of cell number, we also measured the live
YFP channel during stimulation time in order to more
accurately measure this value before the many plate manip-
ulations later, which may alter true effects on viability.

3.4. Data analysis

Correcting and normalizing the large number of data
points from HTS is essential to extracting valid, unbiased
genomic information, and isolating the true regulators [36].
Raw fluorescence values for the Alexa 647/dpERK channel
and YFP/ERK normalization channel were background sub-
tracted using an average of readings from three blank 384-
well plates and the dpERK/ERK ratio was calculated for
each well. Since there is considerable geographic variability in
screening plates due to plate manufacturing defects and/or
differential growth of cells, we corrected for this by dividing
the dpERK/ERK ratio by the product of the median of each
well’s row and column (moving median). To account for
plate-to-plate variability, we converted these normalized, cor-
rected ratios to “Z-scores,” the plate average subtracted from
the well value divided by the standard deviation of the plate.
DRSC screens are typically performed in duplicate, leading to
two such Z-scores that are averaged. Occasionally assay noise
leads to outliers in one of the two readings. To filter these out-
liers, we converted the individual Z-scores to their rank within
the plate, summed the two ranks, and re-selected the top and
bottom 1000 wells. These 2000 wells were then re-converted
to the Z-scores and the two replicates averaged. We chose a
Z-score cutoff of 1.5, but this is usually chosen by the
screener based on location of the known regulators in the list,
the distribution of all amplicons, and the desired number of
regulators for follow-up.

3.5. Interpretation

Like traditional forward genetic screens, RNAi HTS can
isolate novel regulators of particular signaling pathways.
Genes in a primary screen hit list can be validated in sec-
ondary screens, and investigators can follow-up on a few
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chosen novel regulators with more detailed functional anal-
yses. However, unbiased, genome-wide RNAI screens also
provide a glimpse into the systems-level regulation of the
particular pathway—how the cell as a whole modulates the
precise level of pathway output and develops robustness to
perturbation through loss-of-function. These types of anal-
yses are only more recently becoming possible through
standardization of statistical techniques and availability of
many genome-scale datasets. We have used the functional
genomic information from an RTK/ERK signaling screen
to observe particular patterns in the dataset, usually enrich-
ment for particular classes. For example, we compared the
prevalence of genes conserved in humans or particular gene
ontology (GO) functional groups in the original screening
collection (essentially the Drosophila genome) and in our
final primary screen hit list. We determined conservation
patterns from the Homologene [37] and InParanoid [38,39]
genome comparisons. Statistical techniques to gauge the
significance of such patterns, such as tests using the hyper-
geometric distribution, are common and have been incor-
porated into some software packages, e.g., [40].

More broadly, RNAi HTS datasets can be combined, for
example, with functional expression analyses using micro-
arrays or high-throughput protein—protein interaction (PPI)
maps using statistical techniques to model the signaling regu-
latory network on a larger scale. Such models can help place
the individual regulators isolated from a RNAi screen at par-
ticular points within the network, uncovering the hierarchical
relationships between proteins. Combining this data on a
large scale has been successful for Caenorhabditis elegans [41]
and Saccharomyces cerevisiae [42] genomic information and
will likely be applied to RNAi1 HTS in Drosophila and mam-
mals once similar datasets are generated.

4. Secondary screening

In most cases, only a s mall number of replicates can be
provided per dsRNA for genome-wide screens due to the
large number of genes to analyze. In order to validate that
the isolated genes are indeed true positives and not due to
assay noise, secondary screening is required. Secondary
screening of a smaller number of genes also provides the
opportunity to begin functional dissection of each gene by
using different assays or epistasis tests.

4.1. Gene choice

Superficially, the genes further screened can be the top
200 or so genes isolated. However, it is clear from many
HTS performed thus far that the strongest regulators, in
addition to known components of the pathway, may also
be components of large molecular complexes such as the
proteasome or ribosome. These proteins may play a direct
role in modulating pathway activity by interacting with the
core signaling cassette, or their activities (e.g., protein syn-
thesis) may be non-specifically permissive for signal trans-
duction in general. Components of a single complex likely

function similarly in the pathway. Thus using only strength
of primary screen hit as the selection criteria may unneces-
sarily further validate and classify genes that all play very
similar and possibly indirect roles in the pathway.

In our primary screen for RTK/ERK regulators, based
on our Z-score threshold, we eventually chose ~1700 genes
as “hits.” This is an unreasonable number to attempt sec-
ondary validation and we therefore hand-selected ~375. In
selecting a secondary validation set, we chose many of the
genes with the strongest effects on the pathway, but, only
used representative members of large complexes; for exam-
ple, we selected a member of the large and small ribosomal
complexes, regulatory and catalytic proteasome particles,
and a handful of other translational/mRNA processing
genes. We also biased towards genes that were conserved in
mammals and annotation categories known to be impor-
tant in signal transduction cascades, e.g., kinases and phos-
phatases. We resynthesized these cherry picked dsRNAs
from the DRSC collection, as described [43].

4.2. Reducing false positives

Although little is understood of their exact mechanism,
sequence-specific off-target effects of siRNAs in mamma-
lian cells or dsSRNAs in Drosophila cells are a known source
of false positives in RNAI screens. Consequently, any sec-
ondary validation of HTS for MAPK pathways likely
should include an estimation of this rate. A reasonable
approach to this is to synthesize additional, non-overlap-
ping dsRNAs targeting the same gene, assuming these dsR-
NAs do not have overlapping off-target effects (for a
discussion of OTE, see [44]). Tools for designing and syn-
thesizing new dsRNAs are available online (e.g., [43]).

4.3. Secondary assay format

Unlike in primary screening, secondary screens provide
the opportunity to more robustly determine statistical sig-
nificance of the genes tested by increasing the number of
replicates and reducing assay noise. For our secondary
screens, we used 5-7 replicates (250 ng/well of each
dsRNA) per assay and distributed these replicates ran-
domly in the 384-well screening plates, along with 14-30
controls (a negative control dsRNA such as luciferase).
We then ran each assay 2-3 times, providing between 10—
21 samples and up to 90 controls per data point. Using
this data, we calculated the average reduction or elevation
in normalized dpERK and p values for each gene. Because
of the large number of samples and conditions tested (see
below), these p values are corrected for the multiple
hypotheses using the False Discovery Rate often imple-
mented in microarray analysis [45,46]. A Bonferroni cor-
rection can also be applied but may be too conservative
for secondary screens when such a high number of true
positives are expected. A third approach is to empirically
determine the significance threshold based on permuta-
tion of the data points.
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In our specific assay, we adjusted our assays to use wild-
type cells rather than ERK-YFP-expressing cells. In order
to provide a normalization vector, we used unconjugated
mouse monoclonal dpERK antibodies (1:1000, Cell Signal-
ing Technology) and rabbit polyclonal total ERK antibod-
ies (1:1000, Cell Signaling Technology) in the 10puL
PBST +3% BSA incubation reaction at 4°C overnight.
After washing twice in 50-80 uL PBST, we incubated the
secondary screening plates for 1-2h at room temperature
in 10 uL PBST + 3% BSA and the following secondary anti-
bodies: goat anti-rabbit Alexa 488 conjugated (1:1000,
Molecular Probes) and goat anti-mouse Alexa 647 conju-
gated (1:1000, Molecular Probes), along with DAPI to stain
cell nuclei (10 pug/mL, Molecular Probes). Following two
washes in PBST (50-80 uL), we read the three fluorescent
channels on a plate-reader in 30 u. PBST. After every
reagent exchange, we spun the plates for 1’ at 1200 rpm.
For detection, we again used a 100 ms read time and the fol-
lowing filter sets: for DAPI detection, excitation 360/40 nm,
emission 460/50 nm, and a 400 nm dichroic; for Alexa 488,
excitation 485/20nm, emission 530/25nm, and a 505nm
dichroic; for Alexa 647 detection, excitation 615/40 nm,
emission 650LP, and the 445/520 nm dichroic. Similar back-
ground subtraction and median corrections were per-
formed and normalized, corrected dpERK/ERK values
were used for the final analysis. Normalization to DAPI
gave similar results.

4.4. Secondary screen assays

Repeating the screening assay can validate the initial pri-
mary screening result with greater statistical confidence.
However, because fewer genes and therefore plates are pro-
cessed in secondary screens, this format is useful to begin a
functional classification of genes by conducting different
assays. For example, in our assay for RTK/ERK regula-
tors, we have tested different cell lines and multiple ligands
stimulating different RTKs. Assays measuring other
MAPK cascades could similarly use different cell lines and
stimuli, such as different stress sources for p38/JNK, to clas-
sify genes as condition-specific or non-specific.

A Mix Drosophila cells and Ras1 or Gap1 dsRNA (250ng/well final amount)

l

Add mixture to dsRNA-containing wells

Continue screening assay (Fig. 2)

Compare Ras1 or Gap1 + negative control dsRNA
to Ras1 or Gap1 + screened gene dsRNA

Moreover, any of the assays we suggested above as a pri-
mary screen assay could theoretically be used in secondary
screens to begin placing genes within the signaling cascade
according to function. For example, an ERK transcrip-
tional reporter primary screen could be followed up by sec-
ondary screens measuring Ras activation, ERK
phosphorylation, and ERK nuclear—cytoplasmic shuttling
in a HCS microscopy-based format.

Another approach to functional classification of genes
from HTS is to perform epistasis analysis, which has been
reviewed in the context of mammalian RNAI screens [16].
We have used this approach previously to order genes
within the Wg/Wnt pathway [15]. As in traditional genetic
epistasis analyses in model organisms, known components
of the pathway with opposing effects on output can be
over-expressed or knocked down by dsRNAs during sec-
ondary screening. In our dpERK screen, we mixed cells
immediately before plating with 250 ng/well of either Rasl
or Gapl dsRNA, the latter being the Ras GTPase activat-
ing protein, a negative regulator of the pathway. Thus, the
effects of each gene in combination with either dSRNA are
compared to controls also incubated with either dSRNA
(Fig. 3A). In principle, positive regulators whose effects are
eliminated with Gapl dsRNA possibly function upstream
of Gapl activity in the pathway and negative regulators
whose effects are eliminated with Rasl dsRNA possibly
function upstream of Ras in RTK/ERK signaling (Fig. 3B).
However, in contrast to traditional genetic epistasis tech-
niques, RNAI epistasis analyses may be complicated by dis-
parities in the timing of gene knockdown by the two
dsRNAs and the hypomorphic nature of RNAI. Thus, the
strength of effect of each dsSRNA and target stability may
be just as important as the hierarchy within the pathway in
determining the degree of epistasis. Nevertheless, this
approach with multiple members of MAPK cascades may
begin to order novel genes within the pathway.

Lastly, this type of analysis can be applied to a primary
screen to search for suppressors or enhancers of a particu-
lar gene phenotype. We have used this previously, for
example, to identify modifiers of a Pten-mediated morpho-
logical phenotype [22]. This kind of screen may potentially

B

>125%

Original dpERK phenotype
dpERK with Gap1 dsRNA
Original dpERK phenotype
dpERK with Ras1 dsRNA

Relative position 0%
Downstream/parallel

Upstream <75%

Fig. 3. Ordering genes within the RTK/ERK pathway by RNAI epistasis. (A) Genes validated in secondary screens can be re-screened in the presence of
Rasl or Gapl dsRNA, and the normalized dpERK values compared to controls also treated with the given dsRNA. (B) Positive regulators which are sup-
pressed by Gapl dsRNA (left) or negative regulators which are suppressed by Rasl dsRNA (right) may function upstream of Ras activation in the path-
way. Scale is given as percent of negative control (also treated with Rasl or Gapl dsRNA) normalized dpERK.
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be more sensitive in identifying new components of a given
pathway, analogous to traditional genetic screens in sensi-
tized backgrounds originally used to identify components
of the Ras pathway (e.g., [47]).

5. Data mining techniques for in vivo validation

HT screening, both primary and secondary, is a power-
ful approach to identifying and classifying new components
of signaling pathways. However, the in vivo relevance of the
given genes can currently only be tested using “low-
throughput” traditional approaches in model organisms.
For our Drosophila cell-based screens, we tested novel regu-
lators in the context of RTK/ERK signaling-dependent
development. Drosophila is a well-characterized system
with many tools available for genetic dissection of this
pathway, as well as other MAPK pathways (e.g., JNK,
reviewed in [48]). Genes that validate as physiologically rel-
evant are potentially conserved and of greater importance
in regulating the RTK/ERK pathway.

Even in secondary screens, hundreds of genes are ana-
lyzed, and testing for physiological relevance in vivo can
only feasibly be performed in any depth on a few genes.
Choosing which genes to analyze from the hundreds of
validated regulators is a significant challenge following
HT screens. While the strongest novel regulators may
seem to be the most likely to test first, we have observed,
anecdotally, that these have not necessarily been the
strongest in vivo regulators. Our approach, outlined
below, has been to use additional data sources to identify
which genes are the most likely to regulate the core sig-
naling cassette. As we describe above for primary screen
data sets, combination of functional genomic and proteo-
mic information can be performed in a more systematic
and statistically robust manner given the availability of
such resources and analytical tools. Our methods are
based on manual curation of public Drosophila dat-
abases; similar approaches could be applied to mamma-
lian datasets.

5.1. Genetic interactions

Because of the extensive use of Drosophila to study
RTK/ERK signaling, there are many alleles of pathway
components available and a wealth of genetic interactions
tested using pathway components. We hypothesized that
novel regulators isolated from our screen may have direct
or indirect genetic interactions previously tested, given
availability of known alleles. Using an online genetic
interactions tool [49] that references interactions curated
from FlyBase [50], the genetic interactions between
known pathway components and all other genes were
downloaded. Next, genetic interactions between regula-
tors validated in our secondary screens and all other genes
were collected. By cross-referencing these lists, two sets of
interactions were generated: (1) previously described
direct genetic interactions between known components of

the pathway and validated regulators from our screen;
and (2) “Transitive” genetic interactions, such as those
where a known pathway component and a novel regulator
both interact with another gene, “Gene X,” implying an
potential indirect genetic interaction between the known
pathway component and the novel regulator. This list of
binary interactions was formatted and visualized using
the freely available GraphViz software. These interactions
are shown in Fig. 4A, indicating the position of known
pathway components and screen hits. In general, however,
this analysis was not particularly useful: first, only known
genes with alleles can be examined, excluding all truly
uncharacterized genes. Second, for those genes with
alleles, genetic interactions tested tended to be highly
biased towards one or two known pathway components
frequently used for such interactions, as evidenced from
the large hubs in the genetic interaction network. In addi-
tion, automatic curations can be contaminated with failed
(negative) genetic interactions as well as true interactions,
complicating the analysis.

5.2. Protein—protein interactions

Unbiased datasets could provide more useful informa-
tion than the biased genetic datasets. At least two large-
scale protein—protein interaction (PPI) datasets have been
generated for the Drosophila proteome [51,52]. Hits isolated
from HTS which interact with known components of
MAPK pathways may be bona fide novel components of
the cascades and provide testable hypotheses for future
functional characterization. As with the genetic interac-
tions, we downloaded PPI between known pathway com-
ponents and all other proteins using the Biomolecular
Interaction Network Database (BIND) [52] and the FlyNet
server [53], which also provides interologs, or predicted
interactions, based on S. cerevisiae and C. elegans screens,
which tend to be richer than the Drosophila databases. We
also downloaded interactions between the regulators vali-
dated in our secondary screens and all other proteins using
these databases. We assembled a RTK/ERK signaling pro-
tein interaction network by combining these two lists and
mapping interactions between known pathway components
and novel regulators or between known components and a
single intervening protein, which also interacts with novel
regulators. We visualized this network using GraphViz, as
before (Fig. 4B).

These interactions provided insight into the potential
functions of novel regulators. Although large-scale PPI
maps contain many false positives, we were able to
validate some of these interactions by co-immunoprecipi-
tation (A. F. and N. P., unpublished). However, these
maps currently also have a very high false negative rate, as
evidenced by the low overlap between the two large-scale
datasets and the lack of interactions between known
components of the pathway extensively validated to bind.
As additional interactions are added, converging RNAI
and PPI datasets will become more useful for hypothesis
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Fig. 4. Examples of genetic and protein—protein interaction data mining. Genes validated in a secondary screen for regulators of RTK/ERK signaling were
cross-referenced with databases of genetic interactions (A) or protein—protein interactions (B) as described in the text.

generation and identifying regulators from HTS for
in vivo follow-up.

5.3. Potential feedback circuits

RTK/ERK signaling is extensively regulated by positive
and negative feedback circuits. Novel regulators that are
potential components of such circuits may play an impor-
tant, conserved role in modulating this pathway in vivo. We
have taken two approaches to identify such genes in a sec-
ondary screen list.

Genes that are transcriptionally regulated by pathway
activation and also score in RNAi screens may be
components of these feedback loops. Using this principle,
we downloaded microarray data from two functional
expression analyses related to RTK signaling in Drosophila:
an analysis of transcriptional changes upon Ras¥!? expres-
sion in hemocytes in vivo [20] and a comprehensive study of
EGFR/Ras signaling components over-expressed or
mutated in the Drosophila ovary [21]. Similar datasets may
be available for other MAPK pathways.

Additionally, we have used the ScanSite web-based plat-
form [54] to identify hits in our screen that contain ERK con-
sensus docking and phosphorylation sites. Genes with these
sites may be direct targets of ERK signaling and, as hits in
our screen, components of feedback regulation. Although we
have not validated the results from either of these two data
mining approaches thus far, this information provides addi-
tional evidence supporting characterization in vivo.

5.4. Other considerations for gene selection

In addition to these data sources, we also considered the
strength of the regulation, the pattern or consistency of
effect across cell lines and RTK stimuli (with a bias towards
consistent regulators), evolutionary conservation (biased
towards those with highly conserved orthologs), and the
annotation category (e.g., biased towards kinases and phos-
phatases). In addition, novel information sources such as
literature mining tools [55] could also be used for assem-
bling additional data for each gene.

In summary, a data mining approach towards a high-
throughput gene list could direct future functional and
in vivo characterization towards genes with other data
sources linking them to the canonical signaling cascade.
Other unbiased data sources such as protein—protein
interaction maps and microarray analyses provide the
most useful information for this approach. Although we
have begun validating a few genes identified through this
process in vivo, whether using other data sources can truly
improve the in vivo validation rate compared to that using
RNAI screen data alone awaits a large-scale validation
effort.

6. Future directions
We have described a high-throughput approach to dis-

secting the ERK MAPK cascade using a phospho-specific
antibody-based RNAIi screening platform in Drosophila
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cells. This approach, which can be extended to many com-
ponents of other MAPK cascades, provides a significant
step beyond traditional methods using forward genetic
screens and mammalian cell biology to build the canonical
core signaling cassette. Combination of this data with other
primary or secondary screens, enhancer/suppressor analysis
by co-RNAI, and curationg by data mining of other sources
of information on the pathway, should support a systems-
level understanding of cellular regulation of this pathway.
Similar approaches could be applied to mammalian RNAi
screens of MAPK cascades and gain-of-function studies in
Drosophila or mammalian cell culture. Novel regulators of
MAPK cascades isolated from such screens may be attrac-
tive targets of drug discovery. Moreover, for existing drugs,
combining genome-wide RNAI screens with chemical treat-
ment may help identify their target proteins or pathways
[56] as has been demonstrated in S. cerevisiae [S7-59].
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