

Supplementary Figure 1 Mutations in intein^{TS} alleles.

The nine TS alleles identified were sequenced to identify the lesions responsible for their phenotype. While no mutations were found in the DNA encoding the flanking regions of the Gal4 host protein, intein sequence analysed indicated a mutation rate of 0.3% per base. Of the total changes, 10 conservative and 27 missense mutations were identified while nonsense and frame shift mutations were not recovered. The positions of the mutations identified with relation to the structure of the intein and its conserved domains are shown. No attempt has been made to identify the individual contributions of each lesion within multiply mutated intein molecules although comparison to the TS mutations recently described in the *Mycobacterium xenopi* Gyrase A intein may prove to be informative². It should also be noted that the full length Sce VMA intein used contains the SceI restriction endonuclease in addition to the domains required for splicing³. The SceI region includes the C, D, E and H domains and is not required for protein splicing

A schematic representation of a wild type VMA1 intein highlighting the regions (A-H & N2) conserved between inteins and indicating amino acid positions (Top). See <u>www.neb.com/inteins/intein_intro.html</u> and ¹ regarding conserved regions. (Bottom) The position and amino-acid substitution caused by the missense mutations identified in the TS alleles isolated. Only mutations resulting in amino acid substitutions are indicated using the single letter code.

activity^{3,4}. While it is likely that the mutations identified in these domains do not affect splicing directly, it remains possible that they may influence protein stability.

- 1. Pietrokovski, S. Modular organization of inteins and C-terminal autocatalytic domains. *Protein Sci.* **7**, 64-71 (1998).
- 2. Adam, E. & Perler, F.B. Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subunit A. *Mol Microbiol Biotechnol.* **4**, 479-487 (2002).
- 3. Chong, S. & Xu, M.Q. Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. *J Biol Chem.* **272**, 15587-15590 (1997).
- 4. Noren, C.J., Wang, J. & Perler, F.B. Dissecting the Chemistry of Protein Splicing and Its Applications. *Angew Chem Int Ed Engl* **39**, 450-466 (2000).

Postion	Sequence	Comments
VMA1	DAIIYVG/CN/CGE	endogenous context
Gal4 C21	CRLKKLK /CN/ CSK	
Gal80 C127	FVEWALA /CN/ CSL	did not work in Drosophila
Gal80 C277	NGNVPVS/CN/CSF	

Supplementary Table 1 Insertion context of inteinTS alleles.

The context of the Sce VMA intein in its endogenous host protein (VMA1) and the locations used in this study. The ends of intein sequences are shown in **BOLD** while host sequences are shown as NORMAL text.

The host residues immediately N-terminal to an intein have been described as potentially playing a role in determining splicing activity. Although these residues do not play a direct role in the splicing reaction, their carbonyl carbon atoms are the target of three nucleophilic displacements during the course of the auto-catalytic splicing event¹. However, while *in vitro* studies suggest that residues most similar to the cognate residue in this position (a Glycine residue in VMA1, see table above) are most effective² this appears to be less critical *in vivo* as the insertions generated for this project follow Lysine, Alanine and Serine residues, all of which were previously predicted to splice poorly². Therefore, despite our successful generation of Gal4INT and Gal80INT alleles, this may not be mirrored in all host protein contexts³ and more widespread application of this technique will be required before the facility of the system can be fully assessed. A more extensive analysis comparing the different flanking sequences may give additional insight into the context requirements.

- 1. Noren, C.J., Wang, J. & Perler, F.B. Dissecting the Chemistry of Protein Splicing and Its Applications. *Angew Chem Int Ed Engl* **39**, 450-466 (2000).
- 2. Chong, S. et al. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. *Nucleic Acids Res* **26**, 5109-5115 (1998).
- 3. Wu, W., Wood, D.W., Belfort, G., Derbyshire, V. & Belfort, M. Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. *Nucleic Acids Res* **30**, 4864-4871 (2002).

Name	Sequence $(5^2 - 3^2)$	Comments
G4D02	CAAAATCATGTCAAGGTC	Gal4 sequencing
G80DP1R	GGTTACCAGATCTACACCGTTCCCGATTTCATAGATGTATTT	Dead
COODI III	TGGTGACTGATGGACGACAACCTGGTTG	INTEIN amplification
COODDOD		for insertion into Position 1
G80DP2R		INTEIN amplification
	CIIGGICIGAIGGACGACAACCIGGIIG	for insertion into Position 2
G80DP3R	ACGTTCAGCAGCAGCCTTATAAATGGATTCGGCTTGATCTAG	Dead
	TGAACACTGATGGACGACAACCTGGTTG	INTEIN amplification
C00DD4D		for insertion into Position 3
G80DP4R		INTEIN amplification
	ACTOCACTOATOOACOACAACCTOOTTO	for insertion into Position 4
G80P1Fc	AGATTGCTGGAAATGGCGGTTGGTACGGCTACGAAAGGCCT	INTEIN amplification for
	GTTAAATGCTTTGCCAAGGGAACGAATGT	insertion into Position 2
G80P1Rb	GGTTACCAGATCTACACCGTTCCCGATTTCATAGATGTATTT	INTEIN amplification for
	TGGTGAATTATGGACGACAACCTGGTTG	insertion into Position 2
G80P2Fc	AATTTACCAAAAAATTTACCAAAAAATTTGGTCATTGACATTC	INTEIN amplification for
COODODI		insertion into Position 1
G80P2Rb		INTEIN amplification for
C80D3E		INTEIN amplification for
080131	TTGCATGCTTTGCCAAGGGAACGAATGT	insertion into Position 3
G80P3R	ACGTTCAGCAGCAGCCTTATAAATGGATTCGGCTTGATCTAG	INTEIN amplification for
0001011	TGAACAATTATGGACGACAACCTGGTTG	insertion into Position 3
G80P4F	ATCTTTTATTCCAAGGCACATTGTTAAATGGCAATGTTCCAG	INTEIN amplification for
	TGTCATGCTTTGCCAAGGGAACGAATGT	insertion into Position 4
G80P4R	CAAATTTTTGGTAAATTTTTTGGTAGGTTTGCCACCTTTGAA	INTEIN amplification for
	ACTGCAATTATGGACGACAACCTGGTTG	insertion into Position 4
Gal401-F	CGGGATCCCTACGTAATGCACGCCATC	amplification of Gal4 and
Ca1402 D		addition of BamHI site
Ga1402-K	TTTTTGGGTTTGGTGG	addition of Myc tag and
		FroRI site
Gal405-R	CTCCCAGTTGTTCTTAAGACACTTGGCGCACTTCGGTTTTTCT	introduces silent HindIII and
	TTGGAGCACTTAAGCTTTTTAAG	AfIII mutations into Gal4
Gal406c-F	CCCAAGCTTAAATGCTTTGCCAAGGGAACGAATGTTTTAATG	adds HindIII site and some
		Gal4 sequence to 5' end of
		INTEIN
Gal407-R	AGTCCACTCAAAATAGGCTTTATTTGAAGC	internal INTEIN primer to
		destroy endogenous HindIII
Ca1408 P		site
Gai406-K	GCAATTATGGACGACAACCTGG	sequence to 3' end of INTEIN
Gal80F2	ATAGGATCCTTGCGGCCGCAACATGGACTACAAC	amplification of Gal80
Gal80R3	AAGAGCTCAATCTAGATTATAAACTATAATGC	amplification of Gal80
INS1	ATGAAGCTACTGTCTTCTATC	INTEIN sequencing
INS2	CTTTCTTTTGGCCCATCTC	INTEIN sequencing
INS3B	GTAATGCGACCCATGAGTTG	INTEIN sequencing
INS4	AGAAGTATCTCTGGAATC	INTEIN sequencing
INS5	ACTTGCTTATTTACTTGG	INTEIN sequencing
INS6	GACATATAAATAGCATAC	INTEIN sequencing
INS7		INTEIN sequencing
IN101-F	GTCGGGTGCTTTGCCAAGGGTACC	amplification of full length INTEIN
INT02-R	CTCCGCAATTATGGACGACAACCTGG	amplification of full length
		INTEIN
INT05-F	CAACCAGGTTGTCGTCCATCAGTGCTCCAAAGAAAAACCG	mutates INTEIN N645Q to
DIF		give dead INTEIN
PIF	ΙΔΑΟΔΑΑΑΙΑΟΑΙΟΙΑΙΟΑ	nnearisation of p55-Gal80 at
1		

Supplementary Table 2 Oligonucleotides used.

P1R	TTTAACAGGCCTTTCGTAGC	linearisation of pS5-Gal80 at
DOE		position 1
P3F	TGTTCTAGATCAAGCCGAATC	linearisation of pS5-Gal80 at
		position 3
P3R	TGCAAGGGCCCATTCTACGAAAAG	linearisation of pS5-Gal80 at
		position 3
P4F	TGCAGTTTCAAAGGTGGCAAACC	linearisation of pS5-Gal80 at
		position 4
P4R	TGACACTGGAACATTGCCATTTAAC	linearisation of pS5-Gal80 at
		position 4
TIF	TTGCTTGCCAACCAGGTTGTC	INTEIN internal primer to
		test for insertion in GAL80
TP1F	GGGTTCAAACCATCATCTC	test for insertion in Gal80 P1
TP1R	GATCCGGTACTGTCTTTGGG	test for insertion in Gal80 P1
TP2F	GATTGGGCCAGCGAGTCCCA	test for insertion in Gal80 P2
TP2R	ATGAATGTTACCCACAATGGG	test for insertion in Gal80 P2
TP3F	CCCACTTTAGAGTCATTTG	test for insertion in Gal80 P3
TP3R	GATTTAACAGGCCTTTCG	test for insertion in Gal80 P3
TP4F	CAACATTTGGTCACACAATC	test for insertion in Gal80 P4
dppNotI	ATAACTATGCGGCCGCTTTGTTCAATTTTGTAACAG	cloning dpp-hsp70 promoter
hsp70SpeI	AGACTAGTTGTGTGTGAGTTCTTCTTTC	cloning dpp-hsp70 promoter

The oligonucleotides used during the course of this project are described in the text. In general PCR primer pairs carry either the R or F suffix to indicate reverse or forward primers. All sequences are shown 5' to 3'.