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Hedgehog Movement Is Regulated
through tout velu–Dependent Synthesis
of a Heparan Sulfate Proteoglycan

Hh-N molecules act at a longer range and are more
potent inducers of Hh target genes than HhNp (Porter
et al., 1996b). How HhNp can exert its patterning activity
when it is associated to cholesterol, and thus lacks the
properties of a diffusible molecule, is not clear.
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ttv is a member of the EXT gene family, which has beenBoston, Massachusetts 02115
associated with the human multiple exostoses (EXT)
syndrome characterized by bone outgrowths and higher
incidence of bone tumors (chondrosarcomas and osteo-Summary
sarcomas) (Ahn et al., 1995; Stickens et al., 1996). There
are three genetic loci linked to the syndrome, namedHedgehog (Hh) molecules play critical roles during de-
EXT1, 2, and 3. The EXT1 and 2 genes encode homolo-velopment as a morphogen, and therefore their distri-
gous proteins, while the EXT3 gene has not yet beenbution must be regulated. Hh proteins undergo several
identified. Due to loss of heterozygosity of the EXT1 andmodifications that tether them to the membrane. We
2 genes in chondrosarcomas, they have been classifiedhave previously identified tout velu (ttv), a homolog of
as tumor suppressor genes (Hecht et al., 1995; Raskindthe mammalian EXT tumor supressor gene family, as
et al., 1995). This family of EXT genes has been extendeda gene required for movement of Hh. In this paper, we
by the identification of other EXT-like (EXTL) genespresent in vivo evidence that ttv is involved in heparan
showing a high degree of homology with the EXT genessulfate proteoglycan (HSPG) biosynthesis, suggesting
(Wise et al., 1997; Wuyts et al., 1997; Van Hul et al.,that HSPGs control Hh distribution. In contrast to mu-
1998). Although the sequences of Ext proteins do nottants in other HSPG biosynthesis genes, the activity
provide clues about their functions, recent findings haveof the HSPG-dependent FGF and Wingless signaling
implicated them in heparan sulfate proteoglycan (HSPG)pathways are not affected in ttv mutants. This demon-
biosynthesis. In one report, the inability of herpes sim-strates an unexpected level of specificity in the regula-
plex virus to infect the mouse cell line sog9 was showntion of the distribution of extracellular signals by
to correlate with a defect in heparan sulfate (HS) biosyn-HSPGs.
thesis. This defect can be corrected by introducing an
EXT1 cDNA into the mutant cell line (McCormick et al.,

Introduction 1998). Additionally, an EXT2 homolog has been bio-
chemically isolated from bovine serum as a glycosyl-

During development, a number of secreted factors have transferase, which transfers GlcA and GlcNAc sugar res-
been identified that play critical roles in the patterning idues, required for the biosynthesis of HS (Lind et al.,
of fields of cells. In particular, members of the Wnt and 1998). Altogether, these studies have led to the model
Hedgehog (Hh) families have been shown to act several that Ext proteins encode HS polymerase enzymes and
cell diameters away to instruct cells to adopt specific are involved in HSPG biosynthesis.
fates. Unlike other growth factors that can freely diffuse, HSPGs are large macromolecules, which are found
these molecules are thought to be associated with the abundantly at the cell surface and are part of the extra-
membrane and extracellular matrix. One of the major cellular matrix. They are composed of glycosaminogly-
puzzles is how these molecules can reach cells far away can (GAG) chains linked to a protein core. The HS GAG
from their sites of synthesis and how their concentration can be covalently linked to a variety of cell surface pro-
gradients can be regulated. teins but is found consistently on two major families of

Hh proteins specify cell fates at a distance and can proteoglycans, Syndecans and Glypicans (David, 1993).
be detected beyond Hh-producing cells (Tabata and In the context of signal transduction, HSPGs have been
Kornberg, 1994). For example, in Drosophila Hh induces implicated in a number of functions that include co-
the expression of its target genes patched (ptc) and receptors for insoluble and soluble ligands, internaliza-
decapentaplegic (dpp) directly in a domain of 8–10 cell tion of receptors, or transport of molecules or as soluble
diameters along the anterior–posterior (A/P) boundary paracrine effectors (Salmivirta et al., 1996).
of the wing imaginal disc (Mullor et al., 1997; Strigini Recently, the identification of a number of mutations
and Cohen, 1997). Hh is made as a precursor protein in enzymes involved in HSPG biosynthesis has under-
that is autocatalytically cleaved to produce an N-termi- scored the critical role that HSPGs play in development.
nal (Hh-N) and a C-terminal (Hh-C) fragment (Lee et Mice lacking the HS 2-O-sulfotransferase exhibit a renal
al., 1994). During this cleavage process, a cholesterol agenesis phenotype (Bullock et al., 1998). In Drosophila,

mutations in sugarless (sgl, encoding UDP-glucose de-moiety is added to Hh-N (HhNp). HhNp is responsible
hydrogenase) (Cumberledge and Reichsman, 1997), sul-for all the biological activities of Hh in flies and verte-
fateless (sfl, encoding a N-deacetylase/N-sulfotransfer-brates. In the absence of the cholesterol modification,
ase) (Lin and Perrimon, 1999; Lin et al., 1999) (Figure 1),
division abnormally delayed (dally, encoding a Glypican)‡ To whom correspondence should be addressed (e-mail: perrimon@
(Nakato et al., 1995; Lin and Perrimon, 1999; Tsuda etrascal.med.harvard.edu).
al., 1999), and pipe (encoding a putative 2-O-sulfotrans-§ Present address: Equipe ATIPE URA 1857, Ecole Normale Su-

périeure, 46, rue d’Ulm, 75005 Paris, France. ferase) (Sen et al., 1998) cause defects in embryonic
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Figure 1. Segment Polarity Phenotype of ttv and Localization in the Secretory Apparatus

(A–H) Cuticles of wild type (A), ttv embryos (B), and ttv/Df (2R)Trix embryos derived from females with ttv germline clones (C). En staining in
wild-type (D) and ttv embryo (E) at stage 10. Wg staining in wild-type (F) and ttv embryo (G) at stage 10. Anterior is to the left in all panels.
Western blots of unfertilized wild-type (wt) and ttv embryos (GLC) probed with rabbit anti-Ttv antibody (H). The predicted molecular weight
of Ttv protein is 80 kDa, and a band comigrating with the 83 kDa marker is detected in wild type and not in ttv embryos.
(I–L) The ttv-myc transgene was expressed in the engrailed (en) domain by en-GAL4. Embryos were stained for Ttv-myc in green (I), the golgi
marker b-CopII in red (J), and the endoplasmic reticulum marker Bip in blue (K). Colocalization of Ttv-myc with b-CopII is seen in yellow and
with Bip in turquoise (L).

development. These observations suggest that particu- of naked cuticle (Figure 1B) and disappearance of both
wg and en expression. These phenotypes are reminis-lar HSPGs play a role in specific signaling pathways.

Biochemical analyses have indicated that Wnts (Brad- cent to hh or wg segment polarity mutants (Figures 1D–
1G). This segment polarity phenotype represents the ttvley and Brown, 1990; Reichsman et al., 1996) and Hh

are heparin-binding proteins (Lee et al., 1994; Bumcrot null phenotype since the ttv l(2)00681 allele behaves as a
genetic null (Figures 1B and 1C). In addition, we did notet al., 1995). While in the case of Wnt proteins, there is

now substantial biochemical and genetic evidence to detect any Ttv protein in Western blots prepared from
ttv l(2)00681 embryos (Figure 1H).support the model that they interact with HSPGs in vivo

(Cumberledge and Reichsman, 1997), the function of Ttv encodes a type II transmembrane protein (Bel-
laiche et al., 1998), which could be localized at thebinding to heparin in the case of Hh molecules is unclear.

Here, we show that ttv is involved in HS GAG biosynthe- plasma membrane or in the membranes of the secretory
apparatus. To investigate the subcellular localization ofsis in vivo and provide evidence that HSPGs play a

critical role in Hh distribution. Ttv, we epitope tagged the Ttv protein (ttv-myc) because
of the inability of the Ttv polyclonal antibody (Figure 1H)
to recognize Ttv in fixed tissues. When expressed underResults and Discussion
the control of the UAS promoter using the Gal4-UAS
system (Brand and Perrimon, 1993), this ttv-myc genettv Is a Segment Polarity Gene Whose Product

Is Localized in the Secretory Apparatus is able to rescue the segment polarity phenotype of ttv
embryos (data not shown), demonstrating that the mycHomozygous ttv animals die at pupal stage, but when

maternal and zygotic ttv activities are removed (see the epitope–tagged protein is functional.
Staining of embryos or imaginal discs expressing ttv-Experimental Procedures), ttv embryos show absence
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Figure 2. Ttv Is Involved in HSPG Biosynthesis In Vivo

Staining of wild-type (A–C) and ttv mutant (D–F) embryos with the 3G10 antibody. No staining was detected by 3G10 in embryos untreated
with heparinase III (A and D). In embryos treated with heparinase III, uniform staining is detected at early stages (B) by 3G10. At later stages,
stronger staining is observed in the nervous system (C). (B) and (C) are stage 10 and 13 embryos, repectively. In ttv embryos (E), the staining
detected by 3G10 is strongly reduced. The decreased staining is not due to variability in staining conditions because when ttv is ectopically
expressed in a hairy pattern in ttv embryos, the strong 3G10 staining is recovered in the hairy striped pattern (F). For expression of ttv in the
hairy domain, y w FLP12/1; FRTG13 ttv /FRTG13 P[ovoD1]; hairy-GAL4/1 females were crossed to ttv/CyO ftz-lacZ; UAS-ttv males. Anterior is to
the left in all panels.

myc construct under control of en-Gal4 revealed a peri- of ttv activity. The reduced staining detected by the
3G10 monoclonal antibody in ttv embryos could notnuclear and punctate staining (Figure 1I). To determine

in which subcellular compartments the Ttv protein can reflect residual Ttv activity since the ttv allele we used
is a null (Figure 1).be found, we tested whether Ttv-myc colocalizes with

either the golgi protein b-CopII (Figure 1J) (Ripoche et It is possible that other EXT-like genes in Drosophila
are responsible for the staining in embryos. We haveal., 1994) or the endoplasmic reticulum (ER) protein Bip

(Figure 1K) (Kirkpatrick et al., 1995). Interestingly, Ttv- recently identified another EXT-like gene, DExt2, with
some homology to ttv. When the DExt2 cDNA clone wasmyc mostly colocalizes with Bip and partially with b-CopII

(Figure 1L). Further, we did not detect any plasma mem- sequenced, we found that it was more homologous to
vertebrate EXT2 than to EXT1 (44% and 26% proteinbrane staining or a colocalization with the membrane

markers E-cadherin or Armadillo (data not shown). identity, respectively; data not shown). Since DExt2 and
ttv are maternally expressed and uniformly distributedAltogether, these results indicate that Ttv resides mainly

in the ER and in the golgi. in early embryos (data not shown), we propose that the
residual 3G10 staining present in ttv embryos is due to
the activity of DExt2.Ttv Is Involved in HSPG Biosynthesis

We have previously shown that, in ttv mutant clones
induced in the wing imaginal disc, Hh movement and FGF and Wg Signaling Are Not Affected

in ttv Embryostherefore signaling is reduced (Bellaiche et al., 1998).
Recently, two reports have implicated Ext proteins in Since HSPGs are affecting many different factors, such

as FGF and Wnts, we investigated the specificity ofHSPG biosynthesis (Lind et al., 1998; McCormick et al.,
1998). Therefore, we investigated whether HS biosyn- ttv for Hh. We first examined whether FGF signaling is

decreased in the absence of Ttv activity by analyzingthesis in Drosophila embryos was affected in the ab-
sence of ttv activity. To detect the presence of HSPGs the migration of the mesoderm, a process dependent

on the FGF receptor Heartless (Htl) signaling pathwayin vivo, we stained embryos with an antibody (3G10)
that has been shown to recognize an epitope on mouse (Gisselbrecht et al., 1996). In wild-type embryos, the

ventral mesoderm invaginates at stage 6, and at stagetissues following digestion of HSPGs with heparinase
III. Following digestion of the HS sugar chains, one de- 9 mesoderm cells rearrange and form a monolayer (Fig-

ures 3A and 3C). Mutants with defects in Htl signalingsaturated uronate residue per chain will remain linked
to the core protein, enabling the 3G10 antibody to recog- show aberrant mesodermal cell migration, and meso-

dermal cells do not form a monolayer. Mutations in sglnize it (David et al., 1992). Staining of wild-type embryos
with 3G10 reveals a uniform staining during early stages and sfl exhibit a similar mesoderm migration defect con-

sistent with the role of HSPGs in FGF/Htl signaling (Linand a more pronounced central nervous system staining
at later stages (Figures 2B and 2C). No staining could et al., 1999). Surprisingly for a mutation involved in HS

biosynthesis, we could not detect any defects in meso-be detected in embryos that have not been treated with
heparinase III (Figures 2A and 2D). derm migration in ttv embryos (Figures 3B and 3D).

ttv embryos display a segment polarity phenotypeWe then analyzed the 3G10 staining in the absence
of ttv activity. In contrast to wild type, the staining de- similar to loss of either Wg or Hh signaling (Figures

1A–1G). However, since Wg and Hh signaling pathwaystected by 3G10 in heparinase-treated ttv embryos was
strongly reduced (Figure 2E). However, this staining was in the embryonic epidermis are dependent on each

other, the segment polarity phenotype does not allowrecovered when wild-type Ttv activity is reintroduced in
ttv embryos (Figure 2F). These results show that the us to distinguish whether loss of ttv affects Hh as well

as Wg signaling. Therefore, we looked at two otherstaining in Drosophila embryos detected by 3G10 is
specific and the reduction of staining is due to absence Wg-dependent processes during embryogenesis; the



Molecular Cell
636

the RP2 neurons in the embryonic CNS as detected by
an Even-skipped (Eve) antibody (data not shown).

To extend the conclusion that ttv is not required for
Wg signaling, we examined another developmental
stage: the wing imaginal discs. Wg expressed at the
wing margin controls patterning along the D/V axis in
a concentration-dependent manner. Expression of the
proneural genes at the margin and vestigial (vg) and
distalless (dll) at a farther distance are controlled by Wg
(Zecca et al., 1995; Neumann and Cohen, 1997). In ttv
mutant clones at the margin, the expression of the
proneural marker A101 is not affected (data not shown).
Further, we find that the expression of dll is not affected
(Figures 3H and 3I). Thus, Wg signaling in wing imaginal
discs does not require Ttv activity.

Specificity of Ttv for Hh Signaling
In the absence of sgl or sfl activities, which are also
involved in HSPG biosynthesis, both Wg and FGF signal-
ing pathways are reduced (Cumberledge and Reichs-
man, 1997; Lin et al., 1999). Surprisingly, our analysis of
ttv indicates that Hh was specifically affected while both
Wg and FGF dependent processes are not altered. This
raised the question of whether all HS GAG chains are
involved in Hh movement. Therefore, we investigated
whether Hh signaling is affected in clones of sfl mutant
cells in wing imaginal discs. Our analysis suggests that
Hh signaling is affected as well in the sfl clones (data
not shown).

The observation that Hh signaling, but not FGF andFigure 3. Ttv Activity Is Not Required for FGF and Wg Signaling
Wg signaling, is affected in the absence of Ttv activityMesoderm migration is visualized by Twi antibody staining in wild-

type (A and C) and ttv embryos (B and D) at stage 9. (A) and (B) are could indicate that Hh signaling is more sensitive to
ventral views of whole embryos; (C) and (D) are transverse sections. a reduction of HS GAGs than Wg and FGF signaling.
In wild-type cells, Twi-stained cells can be seen as a band with According to this “quantitative” model, Wg and FGF
smooth edge on the ventral side of stage 9 embryos and cross signaling pathways would not be affected in ttv embryos
sections through these embryos show a monolayer of Twi-stained

because HS GAGs synthesized by another Drosophilacells. When FGF signaling is impaired and mesodermal migration
Ext are sufficient to allow these pathways to function.is affected, Twi-positive cells can be seen as a band with rough

edges on the ventral side, and sections through these embryos will Alternatively, according to a “qualitative” model, the
show the cells clustered near the ventral midline. This is not detected specificity of Ttv to Hh signaling suggests the existence
in ttv embryos. The SNS was visualized by staining with anti-Crumbs of Hh-specific HSPGs. In ttv mutants Wg and FGF, sig-
antibodies in wild type (E), wg embryos (F), and ttv embryos (G); naling may not be affected because the HSPGs that
only the head of the embryos are shown. In wg embryos, the SNS

these factors interact with are present. According to theis fused to one invagination, while ttv embryos have normal SNS
quantitative model, we would still expect Wg and FGFinvagination (G). Staining of wing imaginal discs with Dll antibody

in green shows expression of Dll straddling the D/V boundary in signaling pathways to be at the least partially affected.
wild type (H); a large clone of ttv mutant cells shown as absence of However, we found no evidence that the activity of these
red in the V compartment does not affect Dll expression (I). For pathways are reduced. Further, in the absence of Ttv
generating ttv clones, the genotype was hsFLP; FRTG13 ttv l(2)00681/ activity, the effect on Hh signaling is similar to the loss
FRTG13 ubqGFP.

of Hh activity. We therefore favor the “qualitative” model
(i.e., that Ttv activity is required for the synthesis of an
Hh-specific HSPG).

formation of the stomatogastric nervous system (SNS) Recently, another EXT family member EXTL2, has
neurons (Gonzalez-Gaitan and Jackle, 1995) and the been identified as an a-GlcNAc transferase, which deter-
formation of the RP2 neurons (Patel et al., 1989). In wild- mines that a heparan sulfate instead of a chondroitin
type embryos, the invagination of the three SNS neurons sulfate chain will be attached to the linker region of the
can be visualized by staining with antibodies against proteoglycan (Kitagawa et al., 1999). The initiation of the
the Crumbs protein (Figure 3E). In mutants that decrease GAG chain on the protein core depends on Ser–Gly/Ala
Wg signaling, there are less than three SNS invagi- dipeptides that have one or more acidic amino acids in
nations (Figure 3F), while in mutants that increase Wg close proximity (Zhang et al., 1995). It has been pro-
signaling, more than three invaginations can be found. posed that the sequences in the core protein sur-
The SNS phenotype of ttv mutant embryos appears wild rounding the GAG attachment site are important for the
type (Figure 3G), suggesting that Wg signaling is not formation of HS chains. Thus, it is possible that different
affected by loss of Ttv activity. Similarly, we could not Ext proteins might recognize different sequences on

the protein core and thus be specific for certain HSPGs.detect a requirement for Ttv activity in the formation of
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shown that HhN, an N-terminal form of Hh that is not
cholesterol modified, can move further in embryos than
HhNp and can induce ectopic wg expression (Porter et
al., 1995). To determine whether the requirement for ttv
on Hh diffusion depends on the cholesterol modification
of Hh, we tested if the diffusion of HhN is reduced in ttv
embryos by expressing UAS-HhN under the control of
en-Gal4. Interestingly, HhN diffuses (Figure 4C) and in-
duces ectopic en expression (Figure 4D). Thus, ttv is
required for the proper diffusion of the cholesterol-modi-
fied, membrane-associated HhNp but not of unmodi-
fied HhN.

The Role of HSPGs in Hh Movement
Our results indicate that HSPGs are involved in the ability
of Hh to reach target cells. Hh can act at a distance and
is found only at a very low concentration outside Hh-
producing cells. Therefore, either the concentration of
Hh required to signal is very low and the low amount of
diffusible Hh is sufficient for signaling or the membraneFigure 4. Ttv Is Required for the Movement of HhNp in the Embryo
tethered Hh can be transported from cell to cell. One

Hh staining of endogenous Hh in wild-type (A) and ttv embryos
model in which HSPGs could influence Hh distribution(B). Hh in wild-type embryos can be seen in vesicle-like structures
is by concentrating Hh and perhaps presenting it to itsbetween the Hh-expressing cells that are not detected in ttv em-

bryos. Staining of HhN, without the cholesterol modification, in ttv receptor. Such a function has been proposed for HSPGs
embryos expressing HhN under control of en promoter (en-GAL4; in FGF signaling (Schlessinger et al., 1995). This model
UAS-HhN) (C). ttv embryos expressing en-HhN stained for both Hh assumes that HSPGs are not playing a more active role
in green and En in red (D). HhN can be seen in the interstripes of

in the extracellular spreading of Hh.HhN-expressing cells (C and D), and En expression in ttv embryos
The observation that membrane-targeted Hh requiresexpressing en-HhN is wider than two cells as reported in wild-type

embryos. For expressing HhN in ttv embryos, y w FLP12/1; FRTG13 HSPGs suggests that there is a transport mechanism
ttv/FRTG13 P[ovoD1]; UAS-HhN/1 females were crossed to ttv en- for Hh that would allow Hh to move from cell to cell. It
GAL4/CyO ftz-lacZ males. is possible that HSPGs are required to target Hh to a

specific subcellular compartment. Interestingly, Glypi-
cans with reduced GAG chains are sorted differently

According to this model, the protein sequence of the than fully glycanated ones (Mertens et al., 1996) and
HSPG to which Hh binds would be critical for defining

therefore might not able to deliver or aid Hh in the right
its specificity. Another possibility is that Ext proteins

compartment. The transport of Hh might involve so
generate specific GAG chains, perhaps in a complex

called “lipid rafts,” which are microdomains in the
with certain HS-modifying enzymes. This model would

plasma membrane rich in sphingolipids, cholesterol, andexplain the specificity of ttv on Hh signaling, as ttv would
GPI-anchored proteins (Simons and Ikonen, 1997). Inter-generate a GAG chain specific for Hh.
estingly, Hh has been reported to localize into the deter-
gent-insoluble fraction, characteristic for proteins foundThe Movement of HhNp Is Controlled by ttv
in lipid rafts, after separation of cell extracts (Porter etPreviously, we have documented that ttv is required for
al., 1996a; Rietveld et al., 1999). Perhaps a GPI-anchoredthe ability of Hh to reach target cells (Bellaiche et al.,
HSPG, such as a Glypican molecule, is required to local-1998). To extend these observations to embryonic stages,
ize Hh in these rafts. Transfer of GPI-anchored proteinswe examined Hh expression in ttv embryos. Staining
between cells has been observed, and Hh might bewild-type embryos with an Hh antibody shows a strong
transferred from cell to cell in this way (Kooyman et al.,staining in hh-expressing cells and a punctate staining
1995). The cholesterol modification on Hh might alsooutside of these cells (Figure 4A), as described before
facilitate Hh localization into the rafts, after which trans-(Lee et al., 1994; Tabata and Kornberg, 1994). However,
port of Hh can occur.in ttv embryos, Hh is only seen in hh-expressing cells,

Recently, long cytoplasmic extensions extending to-indicating that Hh does not move beyond its site of
ward the A/P boundary have been identified (Ramirez-production (Figure 4B). This phenomenon appears spe-
Weber and Kornberg, 1999). Because these filopodia-cific to Hh because Wg diffusion is not impaired in ttv
like structures or cytonemes may transport moleculesembryos (data not shown).
such as Hh, these authors have proposed that the mech-Hh is produced as a precursor protein, which under-
anism to generate a morphogen gradient is intracellulargoes autoprocessing (see the Introduction and Lee et
and that the time and distance of transport along theal., 1994). During this process, a cholesterol moeity is
cytonemes determines the concentration levels of theattached to the N-terminal portion of Hh (HhNp), which
signal. If this model proves correct, it is possible thatcontains the signaling domain (Porter et al., 1996a,
HSPGs are facilitating the transport of Hh down the1996b). Since HhNp has a cholesterol anchor, it is pre-

sumed to remain bound to the membrane. It has been cytonemes of the receiving cells. We envision that the
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1:5000; mouse anti-Engrailed, 1:10; rabbit anti-Wingless, 1:200;HSPG could either carry Hh molecules along the mem-
mouse anti-Crumbs, 1:5; mouse anti-Evenskipped, 1:10; rabbit anti-brane or could target Hh to the correct intracellular com-
b-galactosidase, 1:1000 (Capel); mouse anti-Distalless, 1:10; rabbitpartment or vesicles. Interestingly, HhN without choles-
anti-Hedgehog, 1:2000 with TSA enhancement (TSA Renaissance

terol modification does not require ttv and therefore kit, NEN). Secondary antibodies for histochemical staining were from
HSPGs to move from the producing cells. HhN is pre- Vectorlabs, and fluorescent secondary antibodies were from Jack-

son Immunoresearch. Embryos sections were performed as de-sumably released into the extracellular matrix, is able
scribed in Gisselbrecht et al. (1996).to diffuse further than HhNp, and behaves like an ectopic

Hh. Therefore, the attachment of HhNp to the membrane
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