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’ The isolation and characterization of Drosophila mutations in receptor protein 
tyrosine kinases (RPTKs) have allowed a detailed analysis of the cellular 
processes regulated by these proteins. Recent investigations have identified 
a number of putative ligands involved in the activation of the receptors, 
and have demonstrated that these RPTKs trigger an evolutionarily conserved 
biochemical pathway. In addition to molecules previously identified from 
vertebrate studies, i.e. Crb2, SOS, Ras-Cap, p2lras, Raf, MEK and MAPK, 
genetic studies have suggested that two novel proteins, the protein tyrosine 
phosphatase (PTPase) Csw and the transmembrane protein Rho, are involved 

in RPTK signalling. 
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Introduction 

The functions and mechanisms of action of RPTKs 
have been a major focus of research on Drosophila in 
the past few years. To date, seven Drosophila RPTKs 
have been identified: Sevenless (Sev), Torso (Tar), 
Drosophila epidermal growth factor receptor (DER), 
Drosophila fibroblast growth factor receptor (DFR)-1, 
Breathless (Btl), Drosophila trk (Dtrk) and Drosophila 
insulin receptor homologue (DIRH) (see Fig. 1 for the 
structure of these RPTKs and references), and muta- 
tions in four of them (Sev, Tor, DER and Btl) have en- 
abled the establishment of model systems for analyzing 
the roles of RPTKs in the control of cellular processes 
such as the regulation of cell growth, differentiation, 
migration and viability. 
The analysis of the mutant phenotypes associated with 
Drosophila RFTKs has been key in addressing their in- 
structive abilities. For example, these studies have de- 
fined the roles of Sev, Tor and DER in determinative 
events; have demonstrated that DER is involved in the 
control of cellular division; and have implicated Btl in 
the control of cellular migration. In addition, the avail- 
ability of Drosophila RFTK mutations has allowed their 
signalling pathways to be genetically dissected, lead- 
ing to the identification of many components involved 
in either the activation of the RPTK or the transduc- 
tion of the signal from the membrane to the nucleus. 
These studies have contributed to the realization that 
RPTKs activate a biochemical signalling pathway which 
has been conserved throughout evolution [l-31. 

The methodologies used to study Drosophila RPTKs 
rely on genetic techniques rather than biochemical ap- 
proaches, in contrast with studies on vertebrate RM’Ks. 
The genetic approach is based on three working hypo- 
theses: first, mutations having related mutant pheno- 
types most likely identify genes that encode molecules 
involved in the same biochemical pathway [41; second, 
extragenic modifiers of either a gain-of-function or a 
reduced-activity mutation identify gene functions that 
participate in the same signalling pathway [5,ti]; and 
third, a null mutation in a gene that operates down- 
stream of another gene should suppress the effect of 
an activating mutation in a more upstream component 
[7,8’1. 

In this review, I describe the cellular roles of each of 
the known Drosophila RPTKs, and further, how genetic 
methodologies have been applied to the dissection of 
RPTK signalling pathways. In addition, I discuss the 
role of two recently identified genes (csw and rho) in 
RPTK signalling. 

Sevenless and photoreceptor R7 development 

Studies on the compound eye have provided a 
paradigm for the study of inductive interactions in the 
determination of cell fates 191. The Sev RPTK is required 
in a cell-autonomous manner for cell-fate determina- 
tion of only one of the eight photoreceptor cells, the 
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R7 cell, in each eye ommatidium. In a sev mutant, R7 
fails to differentiate and instead becomes a lens-secret- 
ing cone cell. Even though its mutant phenotype is lim- 
ited to only one cell type, S.CLJ is expressed transiently 
in eight of the 20 cells of the ommatidium: R3, R4, R7, 
the mystery cell and the cone cells 1101. This broad do- 
main of expression suggests that Sev specificity must 
be regulated by a more localized signal. The trans- 
membrane protein Bride of sevenless (Boss), which 
is required by R8 for R7 development, is thought to 
encode a ligand for Sev 111,121. This model is fur- 
ther supported by the following four findings. First, 
boss expression is restricted to R8. Second, heterotypic 
cell aggregates can be formed between boss- and seu 
expressing cell lines. Third, Boss is internalized in a 
Sev-dependent manner 1131. Fourth, boss is instructive 
in promoting R7 cell fate, as ubiquitous expression of 
boss induces the cone cells to become R7 cells 1141. 

Expression of activated forms of sev has revealed that 
expression of the fate of the R7 cell depends on the 
activation of the Sev RPTK pathway, as well as on the 
cell’s history. Expression of activated forms of sev, ei- 
ther in setiexpressing cells 1151 or ubiquitously [161, in- 
duces the mystery and cone cells to become R7 cells, 
but no transformations of the R3 and R4 photorecep- 
tor cells are observed. These results indicate that only 
some of the seu-expressing cells are competent for neu- 
ronal induction by Sev activation. Possibly, some of the 
components necessary for transduction of the signal re- 
ceived by Sev are co-expressed with sev, and thereby 
define a pre-existing pattern of developmental poten- 
tial 1161. In addition, the observation that activated Sev 
in R3 and R4 cells does not induce these cells to en- 
ter the Ri fate path indicates that these cells become 

Fig. 1. Structure of Drosophila RPTKs 
whose mutations have been isolated. 
Structures of Sev, Tor, DER and Bti. All 
RPTKs have a similar structure that con- 
sists of three different domains: an ex- 
tracellular domain responsible for l&and 
binding, which is connected through a 
membrane-spanning region to a cytoplas- 
mic tyrosine-kinase domain. Sev is syn- 
thesized as a precursor that is cleaved 
into two subunits that remain associ- 
ated by non-covalent interactions [65]. 
Tor RPTK contains a split tyrosine-ki- 
nase domain in the intracellular domain, 
and its structure is reminiscent of the 
mammalian platelet-derived growth fac- 
tor receptor [l&20]. DER is similar to 
the mammalian epidermal growth fac- 
tor receptor [29,62]. Btl [34,37] contains 
five Ig-like domains in the extracellular 
domain and a split tyrosine-kinase do- 
main. For the structures of DFRl, Dtrk 
and DIRH, see [34,36,63], respectively. 
Adapted from [64]. 

limited in their developmental potentialities very early 
in ommatidial development. This may be a necessary 
prerequisite for proper development of ommatidia, as 
these cells also contact R8. 

Torso and differentiation of the embryonic 
termini 

Genetic analyses of the maternal systems that con- 
trol the determination of the embryonic plan have 
identified one system, the terminal system, that or- 
ganizes the formation of both the most anterior and 
posterior regions of the embryo 13,4,171. This system 
is under the control of the Tor RPTK, whose kinase 
activity is both necessary and sufficient for terminal 
differentiation [18,1!?*,201. Tor protein is not spatially 
restricted to the embryonic poles 1211, suggesting that 
an activating factor is localized at each terminus of the 
egg. The Tor ligand is most likely localized in the extra- 
cellular space at both embryonic termini and is limited 
in amount [19..1. 

Genetic analysis of other mutations associated with ter- 
minal phenotypes identified the product of the gene 
tsl (torso-like) as a possible candidate for a Tor ligand. 
In genetic epistasis experiments, tsl was found to act 
upstream of tor [221. In addition, mosaic analyses of 
Tsl showed that its activity is required only in a sub- 
set of specialized follicle cells located at the termini of 
the egg chamber 1231. Molecular characterization of tsf 
[24”1 revealed that it encodes a novel protein that is 
likely to be secreted. During oogenesis, tsl transcripts 
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are found in the follicle cells located at both ends of the 
egg chamber. These follicle cells most likely secrete Tsl 
into the perivitelline space, which, by a mechanism not 
yet understood, leads to the terminal activation of Tor 
[24**1. Further indication that Tsl specifies the regions 
in which Tor becomes activated was obtained from ec- 
topic expression of tsl. Ubiquitous expression of fsl 
during oogenesis leads to a phenotype reminiscent 
of gain-of-function foor mutations, in which abdominal 
segmentation is repressed and terminal regions are ex- 
panded 1249 Biochemical experiments are needed to 
conclusively demonstrate that tsl encodes the Tor lig- 
and; however, it is clear that tsl encodes an activity nec- 
essary and sufficient for Tor activation. 

Multiple roles of DER during development 

In contrast to Sev and Tar, DER is broadly expressed 
[251 and performs multiple functions during Drosophila 
development. During embryogenesis, DER is involved 
in the establishment of ventral cell fates, survival of am- 
nioserosa and ventral ectodermal cells, CNS develop- 
ment, production of embryonic cuticle, and germ-band 
retraction [26-281. During imaginal development, DER 
is involved in a variety of developmental processes in- 
cluding imaginal cell proliferation and wing vein for- 
mation 1261. During oogenesis, DER is involved in the 
determination of the dorsal-ventral polarity of the egg 
1291. 
Genetic analyses of DER support the model in which 
the multiple roles associated with DER are associated 
with multiple receptor activities. Some DER mutations 
affect specific developmental processes; for example, 
there exists a set of DER mutations referred to as for- 
pedo that exhibits only the oogenesis phenotype (291. 
In addition, positive and negative interactions can be 
observed between various DER mutations, suggesting 
that DER is regulated by multiple ligands 126,301. 

Recently, support for the model that DER is associated 
with multiple receptor activities has been obtained 
from the characterization of two putative ligands for 
DER, Spi [31**1 and Grk [32”1. Both the qi and gr% 
genes encode molecules similar to TGFa, which has 
been shown to biochemically activate the vertebrate 
epidermal growth factor RPTK (for review, see 1331). 
The torpedo mutations lead to a ventralization of egg 
chambers that is similar to the g&r phenotype. Un- 
like totpedo, whose activity is required in the follicle 
cells, gr/z activity is required in the germ line. Dur- 
ing oogenesis, g& transcripts accumulate asymmet- 
rically, at the dorsal corner of the oocyte. This distri- 
bution most likely results in the production of a spa- 
tially restricted ligand, which, when secreted into the 
perivitelline space, activates DER in the dorsal follicle 
cells [32**1. 

During embryogenesis, one DER ligand is likely to 
be encoded by the spi gene. The spi mutant em- 
bryos exhibit a subset of the defects seen in DER mu- 

tant embryos [26,27,31**1. These defects are associated 
with dorsal-ventral axis formation, glial cell migration, 
sensory organ determination and muscle development. 
Both Spi and DER are broadly expressed during embry- 
onic development, suggesting that other cues, possibly 
provided by Rho (see below), are responsible for deter- 
mining the specificity of the Spi-DER ligand-receptor 
interaction. 

Putative roles of other Drosophila RPTKs 

The cellular processes controlled by the remaining 
known Drosophila RPTKs, DFRl, Btl, Dtrk and DIRH, 
have yet to be studied in detail. On the basis of their ex- 
pression patterns, however, it has been proposed that 
DFRl, DIRH and Dtrk play a role in mesoderm devel- 
opment, neurite outgrowth and neural development, 
respectively [34-361. DFRl is expressed first in the pre- 
sumptive embryonic mesoderm and at later stages in 
muscle precursor cells 1341. Dtrk, which shares struc- 
tural homology with neural cell adhesion molecules of 
the immunoglobulin superfamily, is expressed dynami- 
cally during development of the CNS, where it may reg- 
ulate neuronal recognition [361. DIRH mRNA are mater- 
nally stored and localized uniformly in early embryos. 
During later embryonic development, DIRH expression 
increases in the CNS at the time corresponding to the 
period of active neurite outgrowth, suggesting a pos- 
sible role for DIRH in this process [351. 

More is known about the function of btl. During em- 
bryogenesis, btl is expressed in invaginating endoder- 
mal, mesectodermal and epidermal cells [34,371. Anal- 
ysis of btf mutations IPI has indicated a role in cell 
migration for this RPTK, because subsets of glial cells 
fail to migrate to their proper position during embry- 
onic CNS formation in btl mutant animals. In addition, 
the embryonic tracheal tree does not differentiate prop- 
erly in btlmutant animals and exhibits a phenotype that 
has been associated with defective tracheal-cell migra- 
tion, but not with division and differentiation. 

Drosophila RPTKs activate the same biochemical 
pathway 

Studies on vertebrate, Caenorbabditis elegans and 
Drosophila RPTKs have converged on a common path- 
way triggered by different RPTKs (see recent reviews 
by Williams [ll, Egan and Weinberg [21 and Perrimon 
131; Table 1). Following ligand binding, RPTKs dimer- 
ize, which presumably induces transphosphorylation 
of specific tyrosine residues on the cytoplasmic domain 
of the receptors. These phosphotyrosines then create 
multiple binding sites for target cytoplasmic proteins, 
which bind to the activated receptor through their 
SH2 domains. One of these binding proteins, Drk (also 
known as Sem 5 in C. elegant and Grb2 in vertebrates), 
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has recently been implicated in Sev 139”,40**1 and Tor 
WI signalling. Drk contains one SH2 and two SH3 
domains. Biochemical analyses have revealed that the 
SH2 domain of Drk binds to the activated Sev receptor, 
and that the SH3 domains bind to the guanine releasing 
factor protein SOS [33”,40**,411. Activated SOS facilitates 
the GDP/GTP exchange on p2liWRas1, which further 
transduces the signal. Consistent with these observa- 
tions, SOS and p21mS/Rasl have been implicated in the 
Sev 15,42,43*1 and Tor [6*,44*1 signalling pathways. In 
addition, a negative regulator of p2lWRasl encoded 
by Gap-l has been implicated in Sev 1451 and DER 1461 
signalling. 

In vertebrate cells, an increase in the GTP-bound 
form of p2lWRasl results in the activation of the 
Raf-MEK-MAPK kinase cascade pathway 121. Consis- 
tent with results of vertebrate studies, the Drosophila 
homologue of the mammalian Raf-1 serine/threonine 
kinase has been implicated in the Tor 17,471, Sev 
WI and DER 148,491 pathways. On the basis of bio- 
chemical studies conducted in vertebrate cells, acti- 
vated Raf-1 in turn positively activates MEK, a tyro- 
sine/threonine kinase. Recently, the gain-of-function 
mutation Dsor-1 was isolated in a Drosophila MEK 
gene during a search for second-site suppressors of a 
weak D-@‘allele [50”1. Dsorl is able to suppress the 
terminal defects associated with mutations in D-ruf as 
well as in more upstream components. Further demon- 
stration of the role of this MEK in Tor signalling was ob- 
tained from the analysis of loss-of-function mutations 
in this gene, which have maternal-effect phenotypes 
similar to both lor and D-rafmutations. 

The nature of the downstream components of MEK re- 
mains to be elucidated. Studies in both vertebrate and 
yeast cells have shown that MEK activates a MAPK that 

Drosophila, a MAPK has been isolated 1531; however, 
no mutations are as yet available, so how the RPTK- 
generated signals are transduced from the cytoplasm 
to nuclear factors remains unclear. The nature of the 
transcription factors that are direct targets of MAPK 
still remains to be characterized. In the Tor system, 
no candidates have yet been isolated 131. In the Sev 
pathway, however, a putative DNA-binding protein, 
Yan 1541, which contains multiple putative MAPK phos- 
phorylation sites, is a good candidate for one of these 
factors. 

Role of Corkscrew in RPTK signalling 

Genetic analyses of embryonic development have 
identified a non-receptor PTPase, Corkscrew (Csw) 
155”1, as a member of the Tor signalling pathway. 
Null mutations in csw are associated with a terminal 
phenotype reminiscent of weak D-m! mutations 1481. 
Genetic epistasis analyses have shown that Csw activity 
is needed downstream of Tor, because loss-of-function 
csw mutations suppress the dominant phenotype of tor 
gain-of-function mutations 155”l. In addition, Csw may 
regulate the activity of p2lWRas1, as over-expression 
of an activated p2lms protein in csw mutant animals 
can rescue aspects of the csw mutant phenotypes 144’1. 

Csw is most similar to the mammalian Syp protein (also 
known as SH-PTP2 or PTPlD; 15&581X The biochemi- 
cal roles of these PTPases in RPTK signalling are un- 
known; however, the presence of two SH2 domains 
in these proteins suggests that they could directly bind 
the activated RPTK. This model is supported by recent 
studies with Syp, which physically associates with var- 
ious RPTKS and which becomes tyrosine phosphory- 

directly phosphorylates transcription factors [51,52]. In lated upon binding 157,581. 

Table 1. Molecules involved in Drosophila RPTK signalling. 

Ligand 

Signal cascade 
proteins TSI Boss Spi, Crk 

RPTK Tor Sev DER 

Adaptor fCrb2) Drk Drk nd 

PTPase (Syp) csw nd nd 

CRF SOS SOS nd 

GAP nd Cap1 Gap1 

GTPase (~21 ras) Rasl Rasl Rasl 

Ser/Thr kinase D-raf D-raf D-raf 

Thr/Tyr kinase (MEK) Dsorl nd Dsorl 

Ser/Thr kinase (MAPK) nd nd nd 

GAP: GTPase-activating protein; GRF: guanine-nucleotide releasing factor; nd: proteins whose function in a specific RPTK pathway have 
not yet been determined. 
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Role of Rhomboid in DER RPTK signalling 

A putative transmembrane protein encoded by rhom- 
boid (rho) [591 may play a key role in controlling the 
spatial activation of DER. The expression pattern of 
rho is extremely dynamic, and correlates well with the 
domains where DER activity is required. For example, 
during mid-stages of oogenesis, rho is expressed on the 
apical surface of the dorsal-anterior follicle cells [60.*1, 
which require DER activity for normal differentiation 
[32"1. Lack of rho a&v&y in these follicle cells affects 
their normal cell fates and ventralizes the egg cham- 
ber, a phenotype reminiscent to lack of either grk or 
DEwtorpedo activities [6Pl. The instructive ability of 
rho, analyzed by ectopic expression experiments, has 
shown that ubiquitous expression of rho in follicle cells 
leads to dorsalization of the egg chambers [GO**l. Inter- 
estingly, this dorsalization is dependent upon Grk and 
DER activities, suggesting that Rho may play a role in 
restricting the activation of DER. 

Such a cooperative relationship between Rho and DER 
has also been suggested from the analysis of spi. Similar 
embryonic requirements are shared by spi, DER and 
rho [26,27,31**,591. Because spi and DER are broadly 
expressed during embryogenesis and because rho is 
restricted to cells which require its function, it has been 
suggested that Rho may provide a cue necessary for the 
Spi-DER ligand-receptor interaction [31**1. 

Similar conclusions have been drawn from the studies 
of Rho in wing vein development [6l**l. Expressed in 
the presumptive wing veins, rho is both necessary and 
sufficient for vein formation, a patterning process that 
also requires DER activity. Gene-dosage studies indi- 
cate that localized expression of Rho may amplify the 
signalling pathway activated by the ligand-DER inter- 
action. 

Conclusions 

Recent studies on Drosophila RPT’Ks have revealed 
many insights into the developmental decisions con- 
trolled by RF’TKs, the mechanisms of activation of the 
receptors, and the nature of the biochemical pathways 
that are activated by the RPTKs. In particular, studies 
on Sev, Tor and DER have shown that the domains of 
expression of these RPTKs are broader than the sites in 
which they are required. Precise activation of the RPTK 
signalling pathways requires interactions with ligands 
whose spatial and temporal expression is tightly regu- 
lated. Possibly, other factors such as Rho, whose bio- 
chemical activity remains to be characterized, are also 
involved in regulating the ligand-receptor interaction. 

The genetic dissections of RPTK signalling pathways in 
Drosophila have identified proteins previously uniden- 
tified from biochemical analyses as important signal 
transducers. The existence of a universal ‘signalling 
cassette’ that operates downstream of RMKs raises 
important questions regarding the specificity of sig- 

nalling. The array of transcription factors available in 
different cell types appears to be the main determina- 
tive factor in cell-fate determination. Further dissection 
of RPTK signalling pathways will demonstrate whether 
this concept is correct. 
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