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SUMMARY
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelin-
ation or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these
VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroin-
flammation, NF-kB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P
in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the
phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells
exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse
model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing
VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingo-
limod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
INTRODUCTION

White matter accounts for approximately 50% of the total

volume of the human brain and consists mostly of myelin that

protects neurons and axons, improves nerve conduction, and

serves as an energy source for axons.1,2 Myelin is part of multi-

layered membranes found in oligodendrocytes and Schwann

cells and consists of approximately 80% lipids and 20% pro-

tein. This is a high lipid concentration, given that the mem-

branes of most cells contain 50% lipids and 50% protein.3

Myelin is composed of 40% sphingolipids, 25% phospholipids,

and 35% cholesterol.3–5 Gal-ceramide and sphingomyelin are

the major sphingolipids of myelin, and they are known to play

a critical role in the regulation of membrane stiffness as well

as in the interaction of myelin membranes with axonal mem-

branes and other myelin membranes.6–9 Interestingly, it has

been reported that 50% of sphingolipids in myelin contain

very-long-chain fatty acids (VLCFAs) (C R 22).10–12 This is

remarkable considering that VLCFAs are rare fatty acids that

make up only 5% of the total fatty acids in the body. An in-
Cell M
crease in VLCFAs is known to increase membrane stiffness

and decrease fluidity, and VLCFAs are thought to be critical

for proper myelin function.10,11,13,14

In glia, Gal-ceramide and sphingomyelin are synthesized via a

series of enzymatic reactions that include ceramide synthases,

ceramide galactosyltransferase, and sphingomyelin synthase

upon which they are incorporated into myelin. However, they

are also synthesized and used as membrane components in

other cells that are not part of the nervous system. Hence, the en-

zymes that synthesize these sphingolipids are typically found to

be ubiquitously expressed.15–18 Even though flies lack myelin,

the enzymes that synthesize sphingolipids are highly conserved,

and these lipids are present in wrapping glial membranes and

genes encoding these enzymes are ubiquitously expressed in

the fly CNS.19 In contrast, the enzymes that degrade Gal-cer-

amide or sphingomyelin that contain VLCFA are not well charac-

terized, but the roles of sphingolipids and their synthesis, trans-

port, and function have been studied in flies.20–24

Humans experience a slow and progressive degeneration of

myelin as they age. This demise of myelin is associated
etabolism 35, 855–874, May 2, 2023 Published by Elsevier Inc. 855
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Figure 1. Elevated levels of VLCFAs induce S1P production and neuronal dysfunction

(A) Expressing ELOVL RNAi to downregulate the fly homolog of ELOVL1 or bezafibrate supplementation suppresses the low eclosion rate observed in Re-

po>ELOVL1 flies. Quantification of the percentage of expected animals per cross (n > 6).

(B and C) (B) Glial ELOVL1 expression causes progressive climbing defects (n > 24) and (C) significantly decreases lifespan (n = 100 for Repo>lacZ and Re-

po>ELOVL1).

(D) Model of the mechanisms of VLCFA leading to neurodegeneration.

(legend continued on next page)
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with reduced nerve conduction velocity and gradually disrupts

the function of neural circuits.25Moreover, MS, Huntington’s dis-

ease, and Alzheimer’s disease (AD) are also associated with pro-

gressive demyelination.26,27 Hence, oligodendrocytes and

Schwann cells get exposed to myelin components that contain

high levels of VLCFAs, but how these VLCFAs are metabolized

in glia remains to be established.

We previously described a novel phenotype in patients

harboring a novel variant in the peroxisomal enzyme ACOX1.28

Loss of ACOX1 leads to an elevation of VLCFA as it is the rate-

limiting step in b-oxidation of the VLCFA.29 We found that

ACOX1 is expressed and required in glia, but not in neurons.28

Here, we find that glial loss of ACOX1 leads to an elevation of

VLCFA, which results in a concomitant increase in sphingo-

sine-1-phosphate (S1P). S1P is secreted by glial cells and taken

up by neurons where the elevated S1P level is toxic and causes

neuroinflammation as well as the invasion of macrophages into

the CNS. This toxicity is very significantly suppressed by a

drug that lowers VLCFA synthesis and one that interferes with

S1P signaling. Importantly, lowering VLCFA levels ameliorates

the clinical severity of an experimental autoimmune encephalo-

myelitis (EAE) mouse model of MS and additionally interfering

with S1P signaling significantly improves the clinical phenotypes

in the EAE model.

RESULTS

Elevated levels of VLCFAs in glia cause lethality and
neurodegeneration
We have previously shown that the proper activity of peroxi-

somal b-oxidation is essential for glial survival, and that both

loss and gain of ACOX1 severely affect glial function in flies

and humans, albeit via different pathways. VLCFA levels are

significantly increased when dACOX1 is lost. We showed that

the loss of dACOX1 causes lethality and only a few percent of

the flies eclose. These flies exhibit climbing defects and a

decrease in lifespan. Both defects are suppressed by reducing

the level of VLCFA by inhibiting their synthesis. Indeed, knock-

down of dELOVL an enzyme that produces VLCFAs, suppress

the defects associated with dACOX1 loss. Hence, ACOX1 and

ELOVL1 function antagonistically.28

To dissect the function of VLCFAs, specifically in glia, we

either reduced the levels of dACOX1 using RNAi or elevated

the levels of ELOVL1.28 The dACOX1 RNAi reduced the dACOX1

transcript levels by less than 50% (Figure S1A) and failed to

cause any noticeable phenotype when ubiquitously expressed

(Figure S1B). We therefore examined the lethality and behavioral

phenotypes by increasing the production of VLCFA by express-

ing human ELOVL1 in glia (Repo>UAS-ELOVL1). Approximately

50%of the animals died as pupae (Figure 1A). The loss of viability

associated with human ELOVL1 expression was significantly
(E) Sphingolipid profiling in heads of dACOX1T2A mutants (n = 500 per each geno

sphingosine-1-phosphate; dhSph-1P, dehydro sphingosine-1-phosphate; GR, g

(F) Pathway to convert VLCFAs into S1P.

(G) A decrease in the levels of CDase or SK1 but not SK2 significantly suppresses t

expected animals per cross (n = 5 per each genotype).

(H) A decrease in the levels of CDase or SK1 significantly suppresses the prog

analyses are one-way ANOVA followed by a Tukey post hoc test. Results are me
suppressed by RNAi-mediated reduction of fly dELOVL

(CG31522) indicating that the induced phenotypes are sensitive

to protein levels. Interestingly, vezafibrate, a drug that inhibits

ELOVL1 function,30,31 significantly suppressed the decreased

eclosion rate, again indicating that the induced phenotypes are

highly sensitive to ELOVL1 function. The flies that eclose as

adults (Repo>ELOVL1) exhibit climbing defects after 10 days,

but no climbing defects are observed in 3-day-old flies (Fig-

ure 1B). These flies also have a short lifespan, and all flies die

before day 25 (Figure 1C). Hence, elevating the levels of

VLCFA in glia induces a shorter lifespan and decreases climbing

performance.

To examine whether the lifespan and climbing defects are due

to developmental issues or defects induced after eclosion, we

assessed the phenotypes associated with ELOVL1 expression

in adults only. We expressed Tub-GAL80ts in Repo-GAL4>

ELOVL1 and raised the flies at 18�C (no expression of ELOVL1)

and shifted the animals to 29�C 1–3 days after eclosion (high

expression of ELOVL1). As shown in Figure S1C, expression of

ELOVL1 post-eclosion causes climbing defects at day 15, indi-

cating that ELOVL1 expression in adult glia is sufficient to induce

behavioral phenotypes.

Glial VLCFA are converted to VL-ceramide and
sphingosine-1-phosphate
To assess how VLCFA elevation in glia may affect lipid meta-

bolism, we performed mass spectrometry analysis of 26 ceram-

ides and other sphingolipid intermediates (including dihydrocer-

amide, dihydrosphingosine, and sphingosine [Sph]) in adult fly

heads that lack dACOX1 (Figure 1E). These analyses revealed

that the levels of VL-ceramides (ceramides with VLCFA) were

increased by 2- to 3-fold (Figure 1E), whereas the levels of

ceramides with short- and medium-chain fatty acids remained

unchanged with the exception of C20 when compared with con-

trols. Note that VLCFAs can be promptly converted to VL-ceram-

ides via CerS2.32

Additionally, dihydro S1P and S1P levels were significantly

increased in dACOX1 mutant flies (Figure 1E). Given that dA-

COX1 is almost exclusively expressed in glia in the brain28 and

given that glia correspond to �10% of the cells in the brain,33

the amount of lipids accumulated in glia should be much greater

than the levels quantified in whole heads. Furthermore, the data

show that the levels of VL-ceramides, Sph, and S1P in the adult

heads of Repo>ELOVL1 flies are also significantly increased,

similar to those of dACOX1T2A flies (Figure S1D).

There are at least three pathways to produce ceramides: the

de novo synthesis pathway and two salvage pathways mediated

by the neutral and acidic sphingomyelinases in cytoplasm and

lysosomes, respectively. Hence, it is not obvious what the

source is of the ceramides that produce VL-ceramides. To

assess if the de novo synthesis pathway is affected, we
type). Cer, ceramide; Sph, sphingsoine; dhSph, dihydro-sphingosine; Sph-1P,

enomic rescue construct.

he lethality observed inRepo>ELOVL1 flies. Quantification of the percentage of

ressive climbing defects observed in Repo>ELOVL1 flies (n > 11). Statistical

an ± SEM (****p < 0.0001, ***p < 0.001, **p < 0.01; n.s., not significant).
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measured the transcript level ofCG4162 (Lace) & CG4016 (Spt1)

in heads of Repo>ELOVL1 flies. We found that the transcript

levels of these genes are reduced, indicating that the increase

of VL-ceramide level may transcriptionally inhibit the synthesis

of SPT (serine palmitoyltransferase) controlled by Lace and

Spt1 (Figure S1E). It is likely that the salvage pathways compen-

sate for this decrease.

We further examined whether a neuronal or glial expression of

these enzymes (Lace or Spt1) causes defects. However, either

glial or neuronal overexpression of Lace & Spt1 does not cause

obvious defects, as shown in Figures S1F and S1G. However, it

is well established that ORMDL functions as a potent negative

regulator of SPT activity in the ER.34 In the presence of

ORMDL and elevated levels of ceramides, SPT activity is

dramatically reduced.35 However, overexpression of Spt1 signif-

icantly enhances lethality induced by the expression of ELOVL1

in glia (Figure S1F), suggesting that ORMDL is not inhibited by

VL-ceramides, and hence the production of ceramides derived

from the salvage pathways is not inhibited by ORMDL.35 This

may lead to more substrate for the production of VL-ceramides

and increased S1P production and toxicity. In summary, these

data suggest that the elevated levels of VLCFA in glia lead to

an increase in VL-ceramides and S1P.

The glial S1P exit pathway converts VL-ceramide to S1P
The production of S1P depends on a series of enzymes that are

shown in Figure S2A. In mammals, ceramides are synthesized

by a family of six ceramide synthases (CerS1–6) (Figure S2A),

each of which synthesizes ceramides with distinct acyl chain

lengths. However, there is only a single ceramide synthase in

flies, Schlank.36,37 Ceramides are hydrolyzed into Sphingosine

1 by three different types of ceramidases in humans. Cerami-

dases are encoded by five distinct genes in vertebrates which

encode enzymes with diverse subcellular localizations (Fig-

ure S2A). In flies, there is only a single CDase gene (Figures

1F and S2A). Hence, studying this pathway in mice is com-

plex.38 In contrast, in flies, the absence of ceramide synthase

(Schlank) or ceramidase (CDase) results in obvious pheno-

types, and severe loss-of-function mutations in these genes

cause lethality.22,36

Sph is used to synthesize S1P, which is mediated by SPHK1

and SPHK2 in humans, or SK1 and SK2 in flies (Figures 1F and

S2A). S1P serves both a cell-autonomous and non-autonomous

function,39 and its levels are regulated by the balance of its syn-

thesis and degradation by SGPL1, which is localized to the ER

and is responsible for the irreversible breakdown of S1P.40 Fruit

flies have a single conserved homolog of mammalian, SGPL1,

Sply (Figure S2A).41 We named the pathway that converts VL-

ceramide into S1P consisting of CDase, SK, the S1P exit

pathway (Figures 1F and S2A).

Elevated levels of S1P are toxic
The elevated levels of the intermediate products leading to the

production of S1P or S1P itself in glia may be toxic when the

VLCFA are elevated, either when ELOVL1 is overexpressed or

when dACOX1 is lost. We therefore reduced the levels ofCDase,

SK1, and SK242–44 in glia of Repo>ELOVL1 flies. Expression of

RNAi for CDase or SK1 in glia significantly alleviates the

decreased viability and climbing defects caused by Repo>
858 Cell Metabolism 35, 855–874, May 2, 2023
ELOVL1 (Figures 1G and 1H). However, RNAi for SK2 did not

alter the survival rate (Figure 1G). These findings indicate that

accumulation of S1P, but not the VLCFA or intermediate prod-

ucts in glia, is detrimental and that CDase and SK1 are indeed

required in glia.

S1P is produced in glia but not in neurons
We next investigated which cells express CDase and SK1 in the

fly CNS. We inserted the SA-T2A-GAL4-polyA artificial exon into

a coding intron of CDase (Figures 2A and S2B).45 Given that SK1

lacks a suitable intron to insert T2A-GAL4, we replaced the entire

ORF with a Kozak-GAL4 allele using CRISPR-Cas9-mediated

homologous recombination (Figures 2A and S2C).46 To deter-

mine where these genes are expressed, we crossed the T2A-

GAL4 CDase and Kozak-GAL4 SK1 flies to flies carrying the

UAS- nuclear mCherry detector (UAS-nls-mCherry) (Figure 2B)

and stained them with antibodies against the nuclear Repo.

The expression of both SK1 and CDase is confined to glia,

approximately 70% of the glia of the larval CNS and 90% of

the glia of the adult CNS (Figure 2B). We did not observe expres-

sion of either gene in neurons. These data are consistent with

single-cell and single-nucleus sequencing data of the adult

Drosophila brain.19,47 Similarly, vertebrate expression data re-

ported in Brain-RNA sequencing for CDase and SK1 homologs

are highly enriched in oligodendrocytes and microglia.17,18,48

Hence, the two key enzymes involved in S1P synthesis are highly

enriched or selectively expressed in subpopulations of glia in

flies, mice, and humans.

Given that reducing the expression of these two enzymes

strongly reduces the toxicity associated with elevated levels of

VLCFA, we elevated glial expression of CDase or SK1 to deter-

mine if they may lead to the overproduction of S1P and cause

toxicity. Indeed, overexpression of these enzymes is sufficient

to cause climbing defects similar to the expression of ELOVL1

in glia (Figure 2C), again indicating that elevated production of

S1P via CDase and SK1 in glia is sufficient to induce neurode-

generative phenotypes.

S1P is transported from glia to neuron
S1P is a bioactive lipid that has been implicated in synaptic

transmission, differentiation of oligodendrocytes, and microglial

proinflammatory responses.39,49–51 It has been shown to be

secreted and activates several signaling pathways through a

G-protein-coupled receptor signaling pathway.49 However,

S1P can also be taken up by recipient cells, independent of

S1P receptors (S1PRs).52

Our data clearly indicate that glial cells produce excess S1P

when VLCFA levels are elevated. This raises the following ques-

tions: is the observed toxicity confined to glia (autocrine

signaling), or do glial cells secrete S1P that is toxic to neurons

and/or does it affect other cells (paracrine or endocrine

signaling)? To determine where S1P is localized in wild-type

adult fly brains, we immunostained brains with an anti-S1P anti-

body53,54 and co-expressed Repo>UAS-mCD8GFP to label the

glial cell membranes (green, Figures 2D and S3A–S3C). S1P is

not only enriched in the glial membrane but also highly enriched

in the cytoplasm of neurons in a vesicular pattern (red,

Figures 2D and S3A–S3C), as previously documented in

vertebrates.55–57
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Figure 2. S1P is synthesized in glia and transported to neurons

(A) Scheme of the structure of the CDaseT2A and SK1T2A alleles.

(B) Both CDase and SK1 are expressed in glia of the adult CNS. Expression of CDaseT2A>nls-mCherry (red) colocalized with anti-Repo (green), marking the glia

nuclei in adult CNS (top). Expression of SK1T2A>nls-mCherry (red) colocalized with anti-Repo (green) (bottom). Scale bars: 5 mm.

(C) Increased synthesis of S1P results in severe climbing defects on day 10 at 29�C degree (n > 5).

(D) Expression of ELOVL1 in glia increases the level of S1P in neurons. mCD8-GFP (green) labels the glial membrane, and anti-S1P (red) documents the

expression pattern of S1P in the adult CNS.White arrows indicate abnormal glial membranes caused by glial ELOVL1 expression. The white dotted box indicates

the region that is enlarged. Scale bars: 5 mm.
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To determine whether an elevation of VLCFA levels in glia re-

sults in an increase in S1P levels in neurons, we expressed

ELOVL1 in glia and immunostained for S1P. We observed
some aberrant membrane structures in glia (Figures 2D and

S3A–S3C, white arrows). Importantly, there is an obvious in-

crease in immunoreactivity when stained with S1P antibody
Cell Metabolism 35, 855–874, May 2, 2023 859
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Figure 3. Lowering S1P production or signaling improves neuronal function

(A) Schematic illustrating how VLCFA in glia may lead to neurodegeneration.

(B) Neuronal expression of either UAS-sply or UAS-SGPL1 suppresses the progressive climbing defects observed in flies (Repo-lexA/lexop-ELOVL1) at day

20 (n > 12).

(C) Supplementation of either bezafibrate or fingolimod can significantly suppress the lethality observed in dACOX1T2A mutant flies. Quantification of the per-

centage of expected animals per cross (n > 4).

(D) Bezafibrate and fingolimod rescued the ERG amplitude defects of homozygous dACOX1T2A flies at day 15 (n > 10 per genotype). Statistical analyses are one-

way ANOVA followed by a Tukey post hoc test. Results are mean ± SEM (****p < 0.0001, ***p < 0.001, **p < 0.01; n.s., not significant).
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compared with control animals (Repo>mCD8GFP), both in neu-

rons and glia (Figures 2D, S3A, and S3B). Hence, S1P produced

in glia must be transported to neurons.

S1P induces the demise of neurons
S1P is irreversibly degraded by the human SGPL1 enzyme. This

highly conserved ER enzyme catalyzes the irreversible degrada-

tion of endogenous and dietary S1P, the final step of sphingolipid

catabolism.58,59 Loss of SGPL1 (human homolog of sply) in hu-

mans has been associated with a rare disease characterized

by an elevation of S1P level and neurologic phenotypes.60,61

Metabolic studies based on plasma/fibroblasts of these individ-

uals have revealed elevated levels of S1P. The fly protein, Sply, is

evolutionarily conserved with a DIOPT Score of 15/15.62

If the elevated levels of S1P produced in glial cells are taken up

by neurons and are toxic in neurons, lowering the levels of S1P by

elevating the expression of Sply in neurons may suppress the
860 Cell Metabolism 35, 855–874, May 2, 2023
toxic effects (Figure 3A). We therefore overexpressed sply in neu-

rons upon elevated glial VLCFA production. We used the lexA-

lexop binary expression system to generate flies expressing

lexop-ELOVL1 driven by Repo-lexA.63 Repo>lexop-ELOVL1 flies

exhibit climbing defects beginning at day 20 (Figure 3B), 2 weeks

later than the Repo>UAS-ELOVL1 flies, possibly because the

Repo-lexA is not as potent as the Repo-Gal4.63 Next, we gener-

ated transgenic flies with UAS-sply or UAS-human SGPL1 to

co-express these genes in neurons in the Repo>lexop-ELOVL1

background. Notably, neuronal expression of fly sply or human

SGPL1 significantly improves the climbing defects causedbyRe-

po>lexop-ELOVL1 flies (Figure 3B). However, neuronal knock-

down of sply (elav>sply RNAi) in a wild-type background does

not causeadecrease in lifespanor climbingdefects at day15 (Fig-

ureS3C). Thesedata indicate thatglial transport ofS1P toneurons

is a major source of neuronal S1P increase and that the elevated

levels of S1P cause toxicity in glia and neurons. Importantly, the
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observation that neuronal Sply expression can significantly sup-

press the toxic effects of overproduction of S1P in glia clearly

shows that S1P has a paracrine function and that it can be taken

up by neurons to cause neuronal dysfunction (Figure 3A).

We previously showed that loss of dACOX1 leads to an

increase in VLCFA levels and causes age-dependent electroret-

inogram (ERG) defects at day 15.28 However, the ELOVL1 inhib-

itor, bezafibrate, significantly improved viability and neuronal

function. Another drug, fingolimod, used to treat MS, is known

to bind to the S1PRs and to downregulate receptor levels.64

However, no S1PR has been identified in flies, and the five

known vertebrate S1PR have no homologs in flies.41,62 Hence,

it is not obvious if fingolimodmay suppress the action of elevated

S1P in flies. We supplemented flies that lack dACOX1 (dA-

COX1T2A/dACOX1T2A) with fingolimod and assessed their

viability and neuronal function using ERGs in flies. To our

surprise, fingolimod supplementation caused a dramatic

improvement in viability (Figure 3C) and strongly attenuated

the progressive loss of ERG amplitude (Figure 3D). Note that

ERGs have been used to study retinal disorders but that they

are often relevant to our understanding of neurological dis-

eases.65–67 The ERG depolarization amplitude provides a

readout of the phototransduction process, whereas the on/off

transient spikes at the onset and offset of light correspond to

postsynaptic potential changes.68 Considering the behavioral

defects (climbing defects and lifespan decrease) when VLCFA/

S1P are elevated, the ERGdata indicate that neuronal CNS func-

tions are affected when the animals age, and an unidentified

S1PR must be present in flies. Alternatively, Fingolimod can

act through another mechanism to attenuate the toxicity associ-

atedwith elevated levels of S1P.Most importantly, inhibiting S1P

toxicity is critical to delaying the neurodegeneration caused by

elevated VLCFA levels.

Elevated S1P induces phagocytosis through Draper
Given that elevated S1P levels in neurons cause neurodegener-

ation, wewondered whether and how dying neurons are cleared.

Wrapping glia in Drosophila ensheath peripheral axons in a

manner similar to vertebrate oligodendrocytes or Schwann cells.

Even though flies lack myelin, the enzymes that synthesize

sphingolipids, the components of myelin, are highly conserved

in flies and important components of the wrapping glial mem-

branes, which seem functionally equivalent to myelin-containing

membranes69 (Figure S2A). To determine whether wrapping glia

is affected when S1P levels are elevated, we performed trans-

mission electron microscopy (TEM) of peripheral wing nerves

of 7-day-old Repo>ELOVL1 flies. We found that axons in these

flies have a reduced diameter and exhibit abnormal morphology

when compared with controls (Figures 4A and 4B, black arrows),

and the number of axons is mildly but significantly reduced (Fig-

ure 4C). Additionally, we observe membrane expansions of the

three glial cell types: wrapping glia, perineurial glia, and subper-

ineurial glia (Figures 4A and 4B; marked by orange.70 However,

the total number of glia remains unchanged (Figure 4D). Taken

together, these findings suggest that glia expand their mem-

brane when S1P is elevated in glia and neurons.

The observed glial membrane expansion indicates that the

glia may be hyperactive when S1P is elevated.71 It has been

previously shown that hyperactive glial phagocytosis is suffi-
cient to induce neuronal loss of TH (tyrosine hydroxylase) ex-

pressing neurons and to reduce the life span of flies.72 Since

glial phagocytosis is mediated by Draper, a phagocytic recep-

tor present on glia,73,74 we assessed if the elevation of S1P in

glia affects Draper expression in the adult CNS. We found

that Draper mRNA expression, as well as protein levels, are

significantly increased (Figures 4F and 4G), and the number

of TH positive neurons is significantly reduced at day 7 (Fig-

ure 4E). To assess whether the Draper levels affect the pheno-

types associated with the elevated levels of VLCFA/S1P, we

reduced Draper levels with an established RNAi in a Repo>

ELOVL1 background. This partially suppressed lethality. In

contrast, overexpression of Draper and ELOVL1 severely

reduced lifespan, and the flies that eclose were very short lived

(2 days) (Figure 4H). To examine whether overexpression of

Draper can induce similar glial phenotypes as Repo>ELOVL1,

we further performed TEM of peripheral wing nerves of

3-day-old Repo>UAS-Draper flies. Interestingly, we find that

overexpression of Draper enlarges the glial membrane and

decreases the number of axons, similar to what we observe

in Repo>ELOVL1 flies (Figures S4A and S4B). In contrast,

decreasing the levels of Draper result in less enlarged glial

membrane morphology than the control (Repo>mCherry), and

the number of axons is not affected (Figures S4A and S4B).

Since Draper transcription is increased in glia when axons are

injured,71 the data indicate that expression of ELOVL1 or SK1

in glia leads to an elevation of S1P and an increased level of

Draper that promotes glial phagocytosis.

Loss of dACOX1 induces a strong cellular and humoral
immune response
The significant suppression of neurodegenerative phenotypes

observed in dACOX1T2A flies by Fingolimod, a key drug used

to treat relapsing-remitting MS, an autoimmune disease,64,75

prompted us to explore immune pathways in flies. We noted

that escaper homozygous dACOX1T2A flies accumulate mela-

notic masses that are visible through the cuticle throughout their

body, including eyes, heads, abdomens, and wing margins (Fig-

ures 5A and S4C). Black masses are typically associated with an

immune response against foreign bodies mediated by hemo-

cytes. Bacteria, parasitic wasp eggs, or other immunogens typi-

cally induce differentiation of plasmatocytes, the most common

cells circulating in the hemolymph, into lamellocytes.76 The latter

cell type surrounds the target tissue and forms tight junctions to

sequester the target. The lamellocytes accumulate black

pigment produced by another type of immune cells, the crystal

cells.77–79 Given that wild-type flies (dACOX1T2A/ dACOX1T2A;

GR [genomic rescue construct]) do not exhibit melanotic

masses, the occurrence of melanized tissues in adult flies in

the absence of foreign objects or bacterial infections suggests

that loss of dACOX1 induces an autoimmune response, i.e.,

the organism is attacking its own cells.80 Furthermore, we found

that the melanization phenotypes are progressive and ROS

independent, as treatment with the antioxidant NACA (N-

acetylcysteine amide or AD4) does not alter the accumulation

of melanotic masses (Figure S4C). This is in sharp contrast to

the observed suppression of NACA of the gain-of-function

phenotype associated with the ACOX1 variant that causes

Mitchell syndrome.28
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Figure 4. Elevated S1P induces phagocytosis through Draper

(A) Image of a section of the wing nerve showing the three types of glia: perineurial (PG), sub-perineurial (SPG), and wrapping glia (WG).

(B) Glial ELOVL1 expression leads to extended and expanded glial membranes.

(C and D) (C) The number of axons is significantly reduced in the wing margin nerves of Repo>ELOVL1 flies at day 7 (n = 3 per each genotype); however, the

(D) number of glia is not altered.

(E) The number of TH neurons is significantly reduced in CNS of Repo>ELOVL1 flies (n = 6 for Repo>lacZ, n = 11 for Repo>ELOVL1).

(F) The relative Draper mRNA levels are significantly increased in the CNS of Repo>ELOVL1 and Repo>SK1 flies (n = 3 per each genotype).

(G) Draper protein levels are increased in Repo>ELOVL1 fly heads.

(H) Eclosion rates of Repo>ELOVL1 flies are modulated by Draper expression. Quantification of the percentage of expected animals per cross (n > 7). Statistical

analyses are one-way ANOVA followed by a Tukey post hoc test. Results are mean ± SEM (****p < 0.0001, ***p < 0.001, **p < 0.01; n.s., not significant).
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Given the above observations, we also exploredwhether other

aspects of the immune system are activated. Drosophilamounts

a potent host defense when challenged by various microorgan-

isms among which antimicrobial peptides are prominent. The

proteins implicated in the induction of these peptides are very

similar to those that play a critical role in the mammalian innate

immune defenses.81 Melanotic masses encapsulate tissues

that are perceived as being abnormal or alternatively originate

when the Toll/Cactus/dorsal axis is perturbed. Indeed, the

constitutive activation of the Toll pathway during development

as observed in Tl[10B] or cactus mutants,82 leads to the forma-

tion of melanotic pseudo-tumors that in the most severe cases

cause developmental lethality. However, the melanization
862 Cell Metabolism 35, 855–874, May 2, 2023
phenotype in dACOX1T2A flies is not observed in larvae or pupae,

nor are they observed in young flies (1–3 days old). They are first

observed in 4-day-old flies and gradually increase in size and

number in aging flies (Figures 5A, S4C, and S4D), indicating

that melanization does not cause developmental lethality of dA-

COX1T2A animals.

To determine whether S1P is required for NF-kB activation, we

generated a null mutant allele of CDase (CDasenull) (Figure S2D).

The loss of CDase should lead to a block of S1P production in

glia and promote an increase in VL-ceramides. Indeed, CDase

null mutant fly heads have a �15-fold increase in VL-ceramides,

but they contain less than 40% of the S1P observed in controls

(Figure 5D). Importantly, the IMD (immune deficiency) pathway
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Figure 5. Glial VLCFA/S1P accumulation induces a robust immune response via the IMD pathway

(A) Melanization is observed in numerous tissues of dACOX1 mutant flies (dACOX1T2A). These are not observed in control flies (dACOX1T2A;GR).

(B)Repo>ELOVL1 and Repo>SK1 induce a robust elevation of the antimicrobacterial peptides (AMPs) dependent on the IMD pathway but not the Toll pathway in

adult heads (80> heads of flies were used per genotype. n = 3).

(C) Expression of Relish RNAi suppresses the short life span (n > 50 per genotype) observed in Repo>ELOVL1 flies.

(D) Sphingolipid profiling in heads of yw (control) and CDase mutants (yw;CDasenull) (n = 500 for each genotype).

(E) Fold changes of the levels of AMPs in control (yw), CDase null flies (yw;CDasenull) (n > 30 heads of flies were used per genotype. n = 3).
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activity, as assessed by AMP production (Attacin-D [AttD] and

Diptericin-B [DptB]83,84), is very significantly decreased (by

about 70%–90%) when compared with control flies; however,

the level of the Toll-activated AMPs (Drosomycin [Drs] and

BomS185) is not reduced in CDase-mutant heads (Figure 5E),

indicating that S1P produced in glia indeed induces NF-kB

activation.

To test whether the Toll pathway is activated upon VLCFA

accumulation, we measured the level of mRNAs of the AMP

genes, Drs and BomS, which are typically elevated by the Toll
pathway. We also tested AttD and DptB, which are dependent

on the IMD pathway. Both were assayed in heads of Repo>

ELOVL1 flies. We also assessed the levels of Pvf2, a PDGF

(platelet-derived growth factor)- and VEGF (vascular endothelial

growth factor)-related factor 2, which encodes a ligand for the re-

ceptor tyrosine kinase, Pvr, required for macrophage invasion in

fly brains.86 As shown in Figure 5B, glial expression of ELOVL1 in

adult brains results in a 6-fold increase in the expression of IMD-

specific AMPs and a 3-fold increase in the expression of Pvf2.

Additionally, glial SK1 overexpression results in a 4-fold increase
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in IMD-specific AMPs and a 2-fold increase in Pvf2 expression in

adult brains (Figure 5B). However, transcription of the AMPs

dependent on the Toll pathway (Dro and BomS1) were not signif-

icantly increased in heads of Repo>ELOVL1 (1.3- to 1.7-fold)

Repo>SK1 (1.1- to 1.3-fold) (Figure 5B). To determine whether

the IMD pathway activation is critical for neurodegenerative phe-

notypes, we co-expressed a Relish RNAi in Repo>ELOVL1 flies.

This partially but significantly suppressed the life span reduction

associated with Repo>ELOVL1 (Figure 5C). These data suggest

that an increase in S1P is sufficient to activate the IMD pathway

in the CNS.

Finally, to assess possible contributions of microorganisms in

Repo>ELOVL1 flies, we raisedRepo>ELOVL1 under axenic con-

ditions.87 We did not observe changes in lethality, indicating that

a contribution of microorganisms to the phenotypes associated

with Repo>ELOVL1 flies is unlikely (Figure S4E). In summary,

elevation of VLCFA in glia induces at least two forms of autoim-

munity: a cellular immune responses (melanization) and activa-

tion of the IMD pathway.

Concurrent expression of ELOVL1 in glia and immune
cells induces neurodegeneration
Intriguingly, dACOX1, which encodes a peroxisomal enzyme, is

not only expressed in glial cells but is also highly expressed in

most immune cells, including PPO-expressing hemocytes (Fig-

ure 6A). To assess the contribution of immune cells versus glial

cells in neurodegeneration, we expressed UAS-ELOVL1 in glial

cells (Repo-GAL4), hemocytes (Hml-GAL4, expressed in 70%–

80% of hemocytes),88,89 as well as both tissues (Repo-GAL4

andHml-GAL4). Combined expression of ELOVL1 in glia and he-

mocytes induces a climbing defect in 2-day-old flies. This defect

is not observed in flies in which the gene is expressed in either

cell type alone (Figure 6B). Moreover, the climbing defect is

significantly worse at day 15, although expression of ELOVL1

in glia is already sufficient to induce a mild climbing defect at

day 15 (Figures 6B and 6C). In summary, increasing the produc-

tion of VLCFA in immune cells and glial cells exacerbates the

demise of the nervous system.

Glial S1P facilitates macrophage invasion via the NF-kB
pathway
One of the primary features of neuroinflammation in MS is the

peripheral immune cell recruitment to CNS from lymphoid or-

gans.64,90 We therefore, wondered if S1P secretion from glia

promotes macrophage infiltration into the CNS. We labeled he-

mocytes in animals expressing ELOVL1 in glia (Repo>ELOVL1)

and found a very significant accumulation of macrophages

around as well as within the neuropil of the CNS (Figure 6D)

and no accumulation was observed in control brains (Repo>

lacZ) (Figure 6D). These data indicate that elevated levels of

S1P induce neuroinflammation by recruiting peripheral immune

cells (Figure 6E).

Finally, to assess if the perineural glia that form the blood-brain

barrier (BBB) play a role in Repo>ELOVL1 flies, we expressed

GAL80 in perineural glia in the presence of Repo>ELOVL1 to

suppresses the expression of ELOVL1. It did not affect the climb-

ing defects (Figure S4F), indicating that the behavioral defects

observed in Repo>ELOVL1 flies are not likely due to a problem

related to the BBB. This is consistent with a previous study
864 Cell Metabolism 35, 855–874, May 2, 2023
that macrophage infiltration in the pupal stage is not associated

with BBB integrity.86 Taken together, our findings indicate that

S1P can activate the IMD pathway in glia and recruit immune

cells to the CNS.

The above data indicate that there are striking phenotypic

parallels between loss of dACOX1 in flies, ACOX1 deficiency in

humans, and MS. Indeed, loss of ACOX1 in humans causes a

disease characterized by the accumulation of VLCFA91 (Fig-

ure S4G). The ACOX1 deficiency is often associated with sei-

zures, failure to thrive, visual system failure, impaired hearing

and vision, loss of motor achievements, demyelination, and

neuroinflammation.

Prophylactic bezafibrate treatment ameliorates EAE
progression
Given that our data in flies indicate that an increase in VLCFA and

S1P is at the root of many glia and immunological issues and

given the phenotypic similarities with MS (Figure S4G), we

explored the role of VLCFA and S1P in a mouse model for MS.

The most commonly used animal model to study MS is the

EAE mouse model.92 In this model, mice are injected with the

myelin oligodendrocyte glycoprotein (MOG) peptide (35–55)

(day 0), and their clinical phenotype is monitored over a 30-day

period using a standard scoring system. Injection of myelin trig-

gers an autoimmune reaction that targets the myelin sheath,

resulting in several pathological features including neuroinflam-

mation, demyelination, axonal loss, severe uncoordination,

hind leg paralysis, and occasionally death.

Given the abundance of VLCFA in myelin and its central role in

the pathogenesis of MS, we assessed if inhibition of VLCFA

synthesis ameliorates the clinical progression in EAEmice. Start-

ing from the day of immunization (day 0), we treated the mice

daily with bezafibrate, which inhibits VLCFA synthesis (Figures

7A and S5A). This prophylactic treatment of bezafibrate

(100 mg/kg) significantly ameliorates the behavioral dysfunction

of EAE, as assessed by the clinical score, at the peak and

throughout the chronic phase of the disease (Figures 7A and

7B; Table 1). Demyelination and axon loss were evaluated by

luxol fast blue (LFB) staining (Figures S5B and 5C) and immuno-

staining for neurofilament (NF, Figures S5D and S5E) in the

thoracic spinal cords. Prophylactic treatment of bezafibrate

significantly reduced the demyelinating area (Figures S5B,

S5C, and S5I) and ameliorated axonal loss (Figures S5D, S5E,

and S5I) in the white matter tracts at the chronic stage of EAE.

Since infiltration of immune cells and reactive gliosis play a crit-

ical role in MS,93 we further examined the effect of the treatment

on the infiltration of macrophages, activation of microglia, infil-

tration of cytotoxic T cells, and reactive astrocytes in the demye-

linated lesions at the late stage of EAE.We observed a significant

inhibition of the number of macrophage and microglia (Iba1) in

the spinal cord of bezafibrate-treated EAE mice (Figures S5F,

S5G, and S5J), indicating a suppression of the immune response

by bezafibrate. Of note, we did not find altered responses of

reactive astrocytes (GFAP, glial fibrillary acidic protein) nor cyto-

toxic T cell infiltration (CD8) after bezafibrate treatment

(Figures S5L–S5P). Overall, these results suggest that prophy-

lactic treatment of bezafibrate alleviated demyelination, neuronal

damage, and immune cell infiltration associated with EAE

progression.
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Figure 6. An elevation of S1P in glia or immune cells promotes neuroinflammation

(A) dACOX1 is expressed in immune cells. Green (mCD8GFP)marks the dACOX1-expressing cells. White labels all immune cells (Hemese+). Red (BcF6-mCherry)

indicates crystal cells (PPO1+). Scale bars: 20 mm.

(B and C) Concurrent expression of ELOVL1 in both glia and immune cells (Repo+Hml>ELOVL1) leads to significantly enhanced progressive climbing defects on

both day 2 and 15 (n > 35 per genotype) (B) and a lifespan decrease (C) when compared with controls (n > 50 per genotype).

(D) Expression of ELOVL1 in glia (Repo>ELOVL1) induces hemocyte infiltration into the CNS when compared with control brains (Repo>UAS-LacZ).

(E) Schematic showing that VLCFA accumulation leads to hemocytes recruitment into theCNS. Statistical analyses are one-way ANOVA followed by a Tukey post

hoc test. Results are mean ± SEM (****p < 0.0001, ***p < 0.001, **p < 0.01; n.s., not significant).
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Therapeutic treatment of bezafibrate and fingolimod
synergistically improve EAE behavioral dysfunctions
and pathology
S1P is known to act via G-protein-coupled S1PRs. In the oligo-

dendrocyte lineage, activation of S1PRs stimulates oligodendro-

cyte differentiation,94,95 whereas activation of S1PRs of lympho-

cytes mediates immune activation in MS.96 To lower the levels of
VLCFA and reduce the effects of S1P in immune cells, we treated

EAE mice with bezafibrate and fingolimod at the onset of symp-

toms (day 13) to reflect the therapeutic, rather than preventative

effects (Figure 7C).

Treatment of the EAE symptomswas started on day 13 by daily

oral gavage.Unlikeprophylactic treatmentwithbezafibrate,beza-

fibrate only ameliorates the clinical score at the peak but not in the
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Figure 7. Co-treatment of EAE mice with bezafibrate and fingolimod synergistically improves behavior and cellular pathology
(A) The clinical score during EAE progression was recorded and statistically analyzed using two-way ANOVA, followed by Sidak post hoc analysis; n = 10–13

per group.

(B) Overall disease severity of EAE mice was compared by calculating the area under the curve (AUC) between days 14 and 30, followed by unpaired Student’s

t test; n = 10–13 per group.

(C and D) EAE mice were randomly divided into 4 groups based on the clinical score at the onset of EAE (day 13) and treated with bezafibrate (100 mg/kg),

fingolimod (3 mg/kg), a combination of bezafibrate (100 mg/kg), and fingolimod (3 mg/kg) or vehicle by daily oral gavage. Clinical scores were compared with

(legend continued on next page)

ll
Article

866 Cell Metabolism 35, 855–874, May 2, 2023



ll
Article
chronic phase of EAE development (Figure 7C). As re-

ported,75,97,98 therapeutical treatment of Fingolimod improves

the clinical score throughout the EAE progression (Figure 7C; Ta-

ble 2). Strikingly, a combinationof bezafibrate (100mg/kg) andfin-

golimod (3 mg/kg) treatment showed synergistic effects on

improving EAE-induced paralysis throughout EAE development

(Figure 7D; Table 2). Given that the clinical score is a relative

coarse measure of motor deficits, we also evaluated the fine mo-

tor function using a footprint assay (Figure 7E).99 Bezafibrate and

fingolimod single treatments did not rescue the ‘‘dragging’’ foot-

print phenotype caused by EAE. However, a combination of

both drugs restored the normal footprint and stance distance in

EAE mice (Figures 7E and 7F). Histological analysis also reveals

that bezafibrate and fingolimod synergistically improved the

demyelination (LFB) and neuronal loss (NF) (Figures 7G and 7H).

The treatment also showed a significant Fingolimod-induced im-

mune suppressive effect as indicated by reduced microglia

(Iba1, Figures S6A–S6D) and cytotoxic T cell infiltration (CD8,

Figures S6E–S6H). We also observed CD4+ cells at day 19 in spi-

nal cords as previously reported.100 However, we found very few

CD4+ positive T cells in the chronic stage (Figure S6P). Impor-

tantly, CD8+ T cells have been shown to play a role in the progres-

sionof bothmouseEAEandhumanMS.101–103 Fingolimodbut not

bezafibrate has a minor effect on reducing reactive astrocytes

(GFAP, Figures S6I–S6L). Together, these data show that a com-

bination of bezafibrate and fingolimod has additive beneficial ef-

fects on behavior dysfunction, demyelination, and neuronal loss

in EAE progression.

DISCUSSION

VLCFAs are the most common fatty acid species in CNS

myelin.104 Although VLCFA accumulation has been linked to a va-

riety of demyelination diseases in humans,105 the mechanism by

which VLCFAs are metabolized in glia remains unknown. We

demonstrate that the S1P exit pathway, which converts VLCFA

to S1P, is required in glia, not in neurons. Our findings indicate

that glial cells supply S1P to the nervous system upon elevation

of VLCFAs. This may occur when myelin is degraded, ACOX1

function is lost, or VLCFA synthesis is elevated. The increase in

VLCFA production in glia results in neurodegeneration, which

can be suppressed by bezafibrate, a drug that lowers the produc-

tion of VLCFA or Fingolimod, an S1P antagonist. These data pro-

vide compelling evidence that this enzymatic pathway in glia can

drive neurodegenerationwhen it is too active and toomuchS1P is

produced. The data show that S1P is secreted by glia and taken

up by neurons. In addition, the elevated levels of S1P synergize

with immune cells when their VLCFAs are also elevated. Finally,

this pathway is at least in part evolutionarily conservedas lowering
vehicle control (n = 11–12 per group). Overall disease severity of EAEmice was co

followed by unpaired Student’s t test; n = 11–12 per group. Data were statistica

(E and F) EAEmicewere subjected to footprint analysis on day 30. For normal non-

mark the left feet. For the experimental mice (Veh, BZ, FG, and BZ + FG), red an

stance distance were measured to indicate fine motor function and were statisti

(G) Spinal cord sections from the EAE mice were stained by luxol fast blue (LFB)

loss (n = 4–6 per group).

(H) Quantifications of LFB and NF staining. Values were normalized to vehicle-tre

Sidak post hoc analysis, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data
VLCFA levelswith bezafibrate improves the clinical phenotypes in

the EAE model in mice, and the combination of bezafibrate and

fingolimod improves the clinical phenotypes in a very robust addi-

tive andpossibly synergisticmanner. Taken together, our findings

in flies and mice indicate that the VL-ceramide pathway is critical

in the nervous system and may represent a novel therapeutic

target for neurodegenerative diseases associated with sphingoli-

pid metabolism, including MS.

VLCFA toxicity in glia
A recent study documented that reactive astrocytes can elimi-

nate neurons and mature oligodendrocytes by secreting

saturated VLCFA.106 Our findings reveal that S1P is a primary

downstream effector of VLCFAs that causes toxicity. Intrigu-

ingly, astrocytes do not express the enzymes involved in S1P

exit pathway or express them at very low levels, whereas micro-

glia and oligodendrocytes express the corresponding genes

abundantly.17,18 These data support the idea that glial subtypes

cooperate to metabolize lipids107 and that astrocytes may trans-

fer VLCFAs to oligodendrocytes or microglia. It is unclear

whether VLCFAs can be converted to other lipids, including

phospholipids or cholesterol, which are critical lipids in myelin.

However, our data show that S1P is amajor downstream effector

of VLCFAs in CNS (Figures 1D and 1E).

A potential S1P transport mechanism
Our data show that when S1P production is increased, fingoli-

mod or sply expression in neurons can suppress neurotoxicity.

Similarly, Fingolimod and sply expression have been shown pre-

viously to block S1P function and mitigate dystrophic muscle

phenotypes in Drosophila.58 Secretion of S1P in vertebrate cells

is mediated by SPNS2 (sphingolipid transporter),108 and loss of

the fly ortholog, Spinster, leads to neuronal demise.109,110 How-

ever, it remains to be shown that Spinster is involved in the

secretion of S1P. Once secreted, S1P acts through two possible

pathways: (1) via S1P-S1PR binding111 or (2) via direct uptake by

recipient cells, independent of S1PR-S1P binding.52 Fingolimod

primarily binds to S1PRs,50,64,75 suggesting that there may be an

S1PR receptor in fruit flies.

Immune activation and neuroinflammation
We document that ELOVL1 overexpression in the glia leads to

the activation of the IMD pathway in the CNS, which in turn leads

to the recruitment of hemocytes. This suggests that glial-

ELOVL1 expression is at the root of neuroinflammation through

IMD activation. Moreover, glial knockdown of Relish, a down-

stream effector of the IMD pathway, significantly suppresses

the lifespan decrease in glial-ELOVL1-expressing flies, providing

further evidence that glial IMD activation is the cause of
mpared by calculating the area under the curve (AUC) between days 18 and 30,

lly analyzed using two-way ANOVA, followed by Sidak post hoc analysis.

EAEwild-type (WT)mice, green and redmark the right feet, and yellow and blue

d yellow mark the right feet, and green and blue mark the left feet. Stride and

cally analyzed using two-way ANOVA, followed by Sidak post hoc analysis.

to assess demyelination and stained for neurofilament (NF) to assess neuronal

ated control and statistically analyzed by using two-way ANOVA, followed by

in all figures are represented as mean ± SEM.
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Table 1. Clinical features of EAE after prophylactic treatment of bezafibrate

Group # Sick/total (incidence) Maximum clinical score Cumulative disease index Mean weight on peak day

Vehicle 13/13 (100%) 3.9 ± 0.2 39.5 ± 2.1 21.0 ± 0.7

Bezafibrate 10/10 (100%) 2.6 ± 0.2*** 22.0 ± 2.8**** 21.1 ± 0.7

Values shown are mean ± SEM; n =‘13 or 10 per group.

***p < 0.001.

****p < 0.0001 vs. vehicle group.

Cumulative disease index: sum of clinical score of the entire period.
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neuroinflammation. Interestingly, infiltration of macrophages in

nervous system tissue in acute cases of MS is well estab-

lished.112 Moreover, it is also well established that inflammatory

responses in the CNS cause axonal damage and demyelination

during MS.113 However, the role of elevated VLCFAs in glial and

immune cells in the pathophysiology of MS is not well estab-

lished. Hence, our findings that increased S1P levels but not

VLCFA trigger neuroinflammation are relevant with regard to im-

mune cell accumulation and immune activation in the CNS.
Targeting VLCFA metabolism in demyelinating diseases
It has been documented that the levels of VL-ceramides are up-

regulated, but long-chain ceramides are downregulated in MS

patients when compared with healthy controls. In addition, the

level of S1P is upregulated 3-fold in the cerebrospinal fluid

(CSF) in MS patients.114 These observations are in agreement

with our data that elevation of VL-ceramides leads to an increase

in S1P level. Hence, supplementation of bezafibrate, to lower

VLCFA and S1P production, as well as fingolimod, to suppress

the action of S1P, improves the behavioral dysfunction and pa-

thology associated with EAE mice significantly better than

each drug separately. Bezafibrate is known to slowly cross the

BBB,115 whereas fingolimod crosses the BBB quickly.116 As a

result, bezafibrate’s effect on VLCFA and S1P reduction may

be limited in the brain; hence, supplementing both drugs is

more effective.

The implications of our observations and therapeutic implica-

tions are not restricted to MS. We argue that myelin, which is

very rich in VLCFA-ceramides (10-fold higher than in other

cells), is a very important source of S1P. Hence, myelin break-

down also leads to elevated levels of VLCFA and S1P. The

breakdown of myelin is observed in several other neurodegen-

erative diseases and is often followed by neuroinflammation.

For example, Huntington’s chorea and AD are also associated

with progressive demyelination.26,27 Interestingly, S1P levels in
Table 2. Clinical features of EAE after therapeutical treatment of b

Group # Sick/total (incidence) Maximum clinica

Vehicle 12/12 (100%) 2.4 ± 0.2

Bezafibrate 11/11 (100%) 2.2 ± 0.2

Fingolimod 11/11 (100%) 1.8 ± 0.2

Bezafibrate + fingolimod 11/11 (100%) 1.6 ± 0.1*

Values shown are mean ± SEM; n =12 or 11 per group.

*p < 0.05.

**p < 0.01.

***p < 0.001 vs. vehicle group.

Cumulative disease index: sum of clinical score of the entire period.
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the CSF of patients with mild cognitive impairment-AD are

significantly elevated,117 and a recent report suggests that

genes implicated in the S1P exit pathway are associated with

AD.118 In summary, we argue that neurological diseases in

which myelin is broken down may cause inflammation by

elevating S1P.
Limitations of study
In this study, we show that VLCFAs in glia are metabolized into

S1P, that it is secreted by glia and causes the demise of neurons

when it is elevated. We identify the pathway involved in these

metabolic changes and named it the ‘‘S1P exit pathway.’’ The

uptake of S1P by neurons causes neuroinflammation, activation

of the IMD pathway as well as peripheral macrophage invasion

into the CNS. However, we do not know how S1P is transported

from glia to neuron, given that S1PR and transporter have not yet

been identified in flies. Even though the fly does not have an

obvious S1PRs, the protein that transports S1P, SPNS2 (spinster

homolog 2), was first identified in flies (spinster),119,120 it is highly

expressed in CNS, and its loss causes lysosomal defects and

neurodegeneration.109 Yet, it has not been determined whether

Spinster can transport S1P. In vertebrates, S1P binds to apolipo-

protein M (ApoM) for its transport, which is not conserved in flies.

However, we have previously shown that ApoD (glial lazarillo) in

flies is required for transferring fatty acids from neuron to

glia.66 Therefore, Glaz may also facilitate S1P transport to neu-

rons. In summary, further studies focused on how S1P is trans-

ported from glia to neurons will be required.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hyunglok

Chung (hchung2@houstonmethodist.org).

Materials availability
The lead contact can provide Drosophila strains, plasmids, or other materials used in this study upon request.

Data and code availability
d All data points used to create the graphs can be found in Data S1.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains and genetics
Generation of SK1 Kozak Gal4 (SK1T2A) and CDase CRIMIC Gal4 (CDaseT2A) flies

SK1 Kozak Gal4/CDase CRIMIC alleles were generated as described by Kanca et al.46 respectively. Briefly, sgRNAs that target the

SK1 locus GTTGGCCGTCATATCTTCTTTGG for 5’ end and AATATTTCACTACTGCCCACTGG for 3’end were cloned in pCFD5 vec-

tor (Port and Bullock, 2016). 200 bps of homology arms were synthesized in pUC57-Kan_gw_OK1 vector by Genewiz (South Plain-

field, NJ). KozakGAL4-polyA-FRT-3XP3EGFP-FRT fragment is subcloned from pM37_KozakGAL4 vector into the synthesis product

in between the homology arms. For CDase CRIMIC allele sgRNA targeting the CDase locus (AAGGTAAGGTAGTTATAGCCAGG)

were cloned in pCFD3 vector128 and 200 bps of homolog tarns were synthesized in pUC57-Kan_gw_OK1 vector by Genewiz.

attP-FRT-SA-T2AGAL4-polyA-3XP3EGFP-polyA-FRT-attP cassette were subcloned from pM37_p0 vector to the synthesis product

in between the homology arms. Homology donor plasmids and the sgRNA encoding plasmids were injected into nos::Cas9 embryos

as described in Kanca et al.45
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Generation of CDasenull flies by CRISPR/Cas9 deletion

CRISPR-mediated mutagenesis was performed by WellGenetics Inc. using modified methods of Kondo and Ueda.129 In brief, the

upstream gRNA sequence CAGGAAACTTACGGCCAGAA[AGG] and the downstream gRNA sequence CTAGTCCTCCTTA

ACGGTGA[AGG] were cloned into U6 promoter plasmid(s) separately. Cassette RMCE-3xP3-RFP, which contains two attP site, a

floxed 3xP3-RFP, and two homology arms were cloned into pUC57-Kan as donor template for repair. CDase/CG1471-targeting

gRNAs and hs-Cas9 were supplied in DNA plasmids, together with donor plasmid for microinjection into embryos of control strain

w[1118]. F1 flies carrying selection marker of 3xP3-RFP were further validated by genomic PCR and sequencing. CRISPR generated

a 2,729-bp deletion allele of CDase/CG1471, deleting the entire CDS of CDase/CG1471 gene which was replaced by the cassette

RMCE-3xP3-RFP.

Mice
C57BL/6 mice (purchased from Center for Comparative Medicine at Baylor College of Medicine) were housed in a temperature-

controlled environment (21 ± 1�C) with 14h light/ 10h cycles and fed standard rodent chow (Pico Lab Standard Diet, Cat # 5053)

ad libitum. Mice were routinely checked for health status three times a day. All mice were maintained and studied according to pro-

tocols approved by the Institutional Animal Care and Use Committee of Baylor college of Medicine. Experimental details for the EAE

model are provided in the method details section.

METHOD DETAILS

Transmission electron microscopy for wing margin
Drosophila wing margins were imaged following standard electron microscopy procedures using a Ted Pella Bio Wave processing

microwave with vacuum attachments. The flies were covered in 2% paraformaldehyde, 2.5% glutaraldehyde, in 0.1 M sodium ca-

codylate buffer at pH 7.2. Briefly, the thorax was dissected under the fixative away from the head and abdomen leaving the wings on

the thorax. After dissection the thorax was incubated overnight up to 3 days in the fixative on a rotator. The pre-fixed thorax with

wings was then fixed again, rinsed by 3x with Millipore water, post-fixed with 1% aqueous osmium tetroxide, and rinsed again 3x

with Millipore water. Concentrations from 25-100% of ethanol were used for the initial dehydration series, followed with propylene

oxide as the final dehydrant. Samples were gradually infiltrated with 3 ratios of propylene oxide and Embed 812, finally going into 3

changes of pure resin under vacuum. Samples were allowed to infiltrate in pure resin overnight on a rotator. The samples were

embedded into flat silicone molds arranged so that the sample could be cross-sectioned in the wing margin area. The samples

were then cured in the oven at 62oC for three days. Thin-sections of the polymerized samples were cut at 48-50 nm and stained

with 1% uranyl acetate for 10 minutes followed by 2.5% lead citrate for 2 minutes before TEM examination. Grids were viewed in

a JEOL 1400+ transmission electron microscope at 80kV. Images were captured using an AMT XR-16 mid-mount 16 mega-pixel

digital camera. Given the difficulties in quantifying the size of the glial membrane, a subjective observation method was used.

Drosophila assays
Climbing was performed as previously described.130 Briefly, for all assays, newly eclosed flies were collected and kept at 25�C until

used. To test climbing ability, an acrylic climbing tube was used.130 The climbing tube was gently tapped and then recorded for 10 s.

This was repeated ten times for each vial. The recorded data were analyzed by Tracker software (https://tracker.physlets.org/). SEM

error bars were used in the analysis for climbing assay For the longevity assay, the flies are separated into vials (10 per vial), and

incubated at 25�C. These flies are transferred to fresh vials every 3 days, and the number of dead flies is counted. Survival rates

are calculated for the total population. To quantify the eclosion rate, we counted the # of eclosed progenies divided by # of expected

progenies based on Mendelian ratio. The melanization index was evaluated by counting the # of melanized spots (black spots) in

the body.

ERG Recording of Fly Eye
ERG recordings were performed as described in. In brief, flieswere glued to a slidewith Elmer’s Glue. A recording electrode filledwith

100 mM NaCl was placed on the eye, and a reference electrode was placed on the fly head. During the recording, a 1 s pulse of light

stimulation was given, and the ERG traces of ten flies for each genotype were recorded and analyzed with WinWCP v.5.3.3 software.

Drug administration in fly food
Fingolimod (Sigma, STAR Methods) was added freshly to regular fly food at the indicated concentrations: 100mg/ml and 200 mg/ml

dissolved in distilled water. Bezafibrate (Sigma, STAR Methods) was added freshly to regular fly food at 0.4 mM dissolved in DMSO.

For ERG analysis, flies were transferred to freshly prepared food supplemented with either Fingolimod or Bezafibrate every 2 days.

We followed the protocol described by Koyle et al.87 for axenic flies.

Real-Time PCR
Flies were incubated at a 25 oC incubator before eclosion. For experiments shown in Figure 6A, flies were transferred to a 29 oC incu-

bator right after the eclosion, and only heads (n > 80 per genotype) were collected on day 3. For experiments shown in Figure 6E, flies

were always kept in a 25 oC incubator, and 1–3-day old adult fly heads (n > 30) were dissected and collected. All the collection and
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dissection steps were done on the ice to prevent RNA degradation. Total RNA was extracted using TRIzol (Invitrogen, 15596026)

following themanufacturer’s instructions. EtOHwashing stepwere performed twice for higher RNA purity. Only RNAswith high purity

(the ratio of A260/A230 >2.0) were used for further applications. The cDNA synthesis and the genomic DNA (gDNA) removal steps

were carried out using All-In-One 5X RT MasterMix (abm, G592). Real-time PCR experiments were conducted in triplicates and

analyzed using a CFX96 Real-Time system (Bio-Rad, USA) with iTaq Universal SYBR Green Supermix (Bio-Rad, 1725121). Detailed

Real-Time PCR steps were as follows; PCR reactions were initially incubated at 95 �C for 3 min for polymerase activation and DNA

denaturation. After the pre-treatment, reactions were subjected to the following thermal cycling conditions: 40 cycles of denaturation

at 95 �C for 5 s and annealing/extension at 60 �C for 30 s. After cycling, themelting curve was analyzed to check the existence of non-

specific amplification or inefficient reaction. Experiments were repeated three times. All primers were synthesized (GENEWIZ, USA)

and purified with HPLC. Following primers with high primer efficiency (>90%) were used for amplification:

Rp49 F: TACAGGCCCAAGATCGTGAA (Tm:60)

Rp49 R: TCTCCTTGCGCTTCTTGGA (Tm:60)

pvf2 F: CAGGGCGACGACAATCATCT (Tm:60)

pvf2 R: TGGATAGTCATCGCTCCCATC (Tm:60)

Dip-B F: TTCTCGAGTGCCTGGGCTTA (Tm:60)

Dip-B R: ATTGGGAGCATATGCCAGTG (Tm:60)

AttD F: GTATTCGCCTCCACTCCAGG (Tm:60)

ATTD R: TGCATGACCATTGGCGTTGA (TM:60)

Drosomycin F: CTGGGACAACGAGACCTGTC (Tm: 60)

Drosomycin R: ATCCTTCGCACCAGCACTTC (Tm: 60)

BomS1 F: CTGGGACAACGAGACCTGTC (Tm: 60)

BomS1 R: ATCCTTCGCACCAGCACTTC (Tm: 60)

Draper F: CTGGATGGACCCAATATCTGC (Tm: 60)

Draper R: GTTTAATGCGATAGGTGGAGCA (Tm: 60)

SK1 F: ACACATCCGCAGTATGCCAA (Tm: 60)

SK1 R: CACAATGCCCGAATAGCGTG (Tm: 60)

Lace F: TTTCCAAGATTGGCGCTGTG (Tm: 60)

Lace R: AGAATCGGATGCGTCCTTCC (Tm: 60)

Spt F: TCGGCGGATATTTCACGCAT (Tm: 60)

Spt R: GTTCCGTGCCCTTTCACAAA (Tm:60)

CDase F: CCTTTCTGGCCGTAAGTTTCC (Tm:60)

CDase R: CCACTTGCTTGATGTTGGCATAG (Tm:60).

Primer-BLAST program (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used for the primer design of pvf2, Dip-B, and

AttD. FlyPrimerBank tool was utilized for the CDase primer design.131

Immunocytochemistry
In brief, immunostaining was performed as previously described.130,132 Tissues were dissected in PBS and fixed in 4% paraformal-

dehyde (PFA) in PBS at 4�C on a nutating platform, then transferred to 0.2% Triton X-100 in PBS (0.2% PBST) at 4�C on a nutating

platform for overnight incubation. For immunostaining, the samples were blocked in 5% BSA/2% PBST and incubated with the pri-

mary antibodies: Rat anti-Elav (1:500, 7E8A10, DSHB133), Mouse anti-Repo (1:50, 8D12, DSHB, ) and Mouse anti-S1P (1:100,

Z-P300. Echelon Biosciences) diluted in 5% BSA/0.2% PBST at 4�C for 48 hrs with nutation, then washed 3x with 0.2% PBST for

5 min. The secondary antibodies Donkey anti-rabbit (Cy3) and Donkey anti-mouse (Alexa-647) (Jackson ImmunoResearch) were

diluted 1:250 in 5% BSA/0.2% PBST and incubated with the samples at 4�C for 48 hrs on a rotating platform. Samples were cleared

and mounted in RapiClear (SunJin Lab Co.) and imaged with a Leica SP8 Confocal Microscope under a 20x objective lens and

analyzed using Fiji.134 Pupal brain staining was performed as described in Winkler et al.86

Immune cell staining
Immunostaining of Drosophila larval hemocytes (immune cells) was performed as described previously.135 Briefly, 20 late 3rd instar

larvae (LL3) of the genotype yw;dACOX1T2A, mCD8GFP; BcF6-mCherrywere vortexed and bled in 300 ml of Schneider’s media. The

immune cell suspension was then transferred to a chambered coverglass slide (VWR, cat# 62407-056) and cells were allowed to

settle down at room temperature (RT) for 30 min and fixed in 4% PFA for 20 min. Next, the cells were washed three times using

1x PBS, permeabilized using PBS with 0.1% Triton-X (PBST) for 10 min and blocked with 5% BSA in PBST for 20 min. Lastly, the

cells were incubated with 1:100 anti-Hemese (H2) antibody [1:100 dilution] overnight at 4oC. The next day, cells were washed and

incubated with anti-mouse Alexa Fluor 633 (far red) secondary antibody (Invitrogen, cat# A-21052) for 1 hr at RT. Finally, cells

were washed three times with 1x PBS and mounting media with DAPI (Vector Laboratories Inc., cat# H-1200) was added to cells.

Imaging was performed using Nikon Spinning disk confocal microscope.
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EAE mouse model
While there are some variations in the doses and schedule of EAE induction,136–139 we performed pilot study and optimized our pro-

tocol to ensure a consistent >90% successful rate of EAE symptoms. Briefly, EAE was induced in female C57BL/6 mice (purchased

from Center for Comparative Medicine) at 8 –10-weeks-old by subcutaneous flank administration of 200 mg of myelin oligodendro-

cyte glycoprotein (MOG) peptide (amino acid 35–55; CSBio) in Complete Freund’s Adjuvant (CFA, Millipore-Sigma) containing 1g

non-viable Mycobacterium tuberculosis (H37Ra, ATCC 25177). 300 ng pertussis toxin (Fisher Scientific) was administered intraper-

itoneally on day 0, 2 and 7, along with the MOG administration on day 0 and 7 (Figure S5A). EAE mice were treated daily with Bezafi-

brate (100mg/kg) and/or Fingolimod (3mg/kg) by oral gavage. All drugs were dissolved in 0.5% Sodium carboxymethyl cellulose

(CMC) solution with 0.5% Tween80. Control mice were administrated with vehicle. Mice were scored daily as follows: 0 = no signs;

0.5 = distal limp tail; 1 = limp tail; 1.5 = wobbly walking; 2 = crossed hindlegs; 2.5 = one hind limb paresis; 3 = bilateral hind limb

paresis; 3.5 = severe bilateral hind limb paralysis; 4 = beginning forelimb paresis;4.5 = moribund; (animals were euthanized);

5 = dead.’’

For footprint test, mice with clinical scores up to 2 were habituated to the walkway so that they learned to perform the test with a

reliable walking pattern. The footprint analysis was performed on day 29 in EAE mice with or without drug treatment. The forepaws

and hindpaws of themice were painted with different non-toxic paint using cotton swap, and themice were allowed to run on a 50 cm

x 10 cmpaper-lined tunnel to a hiding box to create consecutive footprints with colors. Three independentmeasurements weremade

from eachmouse every 20 minutes to avoid stress. Stride and stance length was measured and averaged from all three independent

measurements.

Immunostaining for mouse tissues
Mice were anesthetized and intracardially perfused with phosphate-buffered saline (PBS), followed by 4% paraformaldehyde (PFA).

The spinal cords were fixed by 4% PFA for overnight and then dehydrated using serial sucrose-gradient osmosis. The spinal cord

was embedded in OCT compound (Tissue TEK) and stored at -80�C until further use. Tissue sections were prepared with cryostat

(Leica) at a thickness of 15 um, followed by immunostaining as described before.140,141 Following primary antibodies were used: rab-

bit anti-GFAP (1:500; Agilent Dako; SIS), chicken anti-Neurofilament H (1:500; EnCor Biotechnology, CPCA-NF-H), rabbit anti-Iba1

(1:500, Wako, 019-19741), rabbit Anti-CD8 alpha (1:500, Abcam, ab251596). Secondary antibodies included the following:

AlexaFluor-488- and AlexaFluor-568-conjugated secondary antibodies to rabbit or chicken (1:500; Thermo Scientific). Cell nuclei

were stained with DAPI (Vector Labs). Images were obtained by Zeiss Imager.M2m equipped with ApoTome.2, Axiocam 506 mono.

QUANTIFICATION AND STATISTICAL ANALYSIS

Results are presented as dot or bar plots, in which the mean +/- standard error of the mean (SEM) are depicted. All statistical analysis

was performed using Graphpad Prism (GraphPad Software, Inc., Ca, US). When the means of 2 groups were compared, a two-tailed

unpaired t-test was used, and when the means of 2 variables of more than 2 groups were compared, a two-way ANOVA with Tukey’s

multiple comparisons post-test was used. Results were designated significant when the P-value (p)<0.05: *= p<0.05, **= p<0.01,

***= p<0.001, n.s. = non-significant. For mice works, GraphPad Prism v9 was used for generating graphs and statistical analysis.

Data were reported as mean +/- SEM. Two-tailed, unpaired Student’s t-test was used for two-group comparisons. Two-way

ANOVAwasused formultiple group comparisons. Differenceswere considered significant at P < 0.05. The sample size for each exper-

iment is indicated in the corresponding figure legend.
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