STAT

2005
Baeg G-H, Zhou R, Perrimon N. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev. 2005;19 (16) :1861-70. Abstract

The cytokine-activated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays an important role in the control of a wide variety of biological processes. When misregulated, JAK/STAT signaling is associated with various human diseases, such as immune disorders and tumorigenesis. To gain insights into the mechanisms by which JAK/STAT signaling participates in these diverse biological responses, we carried out a genome-wide RNA interference (RNAi) screen in cultured Drosophila cells. We identified 121 genes whose double-stranded RNA (dsRNA)-mediated knockdowns affected STAT92E activity. Of the 29 positive regulators, 13 are required for the tyrosine phosphorylation of STAT92E. Furthermore, we found that the Drosophila homologs of RanBP3 and RanBP10 are negative regulators of JAK/STAT signaling through their control of nucleocytoplasmic transport of STAT92E. In addition, we identified a key negative regulator of Drosophila JAK/STAT signaling, protein tyrosine phosphatase PTP61F, and showed that it is a transcriptional target of JAK/STAT signaling, thus revealing a novel negative feedback loop. Our study has uncovered many uncharacterized genes required for different steps of the JAK/STAT signaling pathway.

2005_Gene Dev_Baeg.pdf Addendum.pdf Supplemental Files.zip
2004
Agaisse H, Perrimon N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol Rev. 2004;198 :72-82. Abstract

Innate immune responses are mediated by the activation of various signaling processes. Here, we describe our current knowledge on Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling in the Drosophila immune response. First, we briefly introduce the main effectors involved in the humoral and cellular responses, such as anti-bacterial peptides and hemocytes. Second, we describe the canonical JAK/STAT-signaling pathway, as established from extensive studies in mammalian systems, and we introduce the Drosophila components of the JAK/STAT pathway, as discovered from studies on embryonic development. Third, we describe the various roles of JAK/STAT signaling in both humoral and cellular responses. We present the JAK/STAT-dependent humoral factors, such as the thioester-containing proteins and the Tot peptides, produced by the fat body in response to septic injury. We also discuss the possible involvement of the JAK/STAT pathway in cellular responses, including hemocyte proliferation and differentiation. Finally, we present how cytokines, such as Upd3, might contribute to the integration of the immune responses at the organism level by orchestrating the response of various immune cells and organs, such as fat body, hemocytes, and lymph glands.

2004_Immuno Rev_Agaisse.pdf
2003
Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell. 2003;5 (3) :441-50. Abstract

To characterize the features of JAK/STAT signaling in Drosophila immune response, we have identified totA as a gene that is regulated by the JAK/STAT pathway in response to septic injury. We show that septic injury triggers the hemocyte-specific expression of upd3, a gene encoding a novel Upd-like cytokine that is necessary for the JAK/STAT-dependent activation of totA in the Drosophila counterpart of the mammalian liver, the fat body. In addition, we demonstrate that totA activation also requires the NF-KB-like Relish pathway, indicating that fat body cells integrate the activity of NF-KB and JAK/STAT signaling pathways upon immune response. This study reveals that, in addition to the pattern recognition receptor-mediated NF-KB-dependent immune response, Drosophila undergoes a complex systemic response that is mediated by the production of cytokines in blood cells, a process that is similar to the acute phase response in mammals.

2003_Dev Cell_Agaisse.pdf
Bach EA, Perrimon N. Prime time for the Drosophila JAK/STAT pathway. In: Segha PB, Levy DE, Hirano T. Signal Transducers and Activators of Transcription (STATs): Activation and Biology. Kluwer Academic Publishers; 2003. p. 87-104. 2003_STATs_Bach.pdf
2002
Hou SX, Zheng Z, Chen X, Perrimon N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev Cell. 2002;3 (6) :765-78. Abstract

The JAK/STAT pathway was originally identified in mammals. Studies of this pathway in the mouse have revealed that JAK/STAT signaling plays a central role during hematopoeisis and other developmental processes. The role of JAK/STAT signaling in blood appears to be conserved throughout evolution, as it is also required during fly hematopoeisis. Studies in Dictyostelium, Drosophila, and zebrafish have shown that the JAK/STAT pathway is also required in an unusually broad set of developmental decisions, including cell proliferation, cell fate determination, cell migration, planar polarity, convergent extension, and immunity. There is increasing evidence that the versatility of this pathway relies on its cooperation with other signal transduction pathways. In this review, we discuss the components of the JAK/STAT pathway in model organisms and what is known about its requirement in cellular and developmental processes. In particular, we emphasize recent insights into the role that this pathway plays in the control of cell movement.

2002_Dev Cell_Hou.pdf
Li WX, Agaisse H, Mathey-Prevot B, Perrimon N. Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development. 2002;129 (18) :4241-8. Abstract

Malignant transformation frequently involves aberrant signaling from receptor tyrosine kinases (RTKs). These receptors commonly activate Ras/Raf/MEK/MAPK signaling but when overactivated can also induce the JAK/STAT pathway, originally identified as the signaling cascade downstream of cytokine receptors. Inappropriate activation of STAT has been found in many human cancers. However, the contribution of the JAK/STAT pathway in RTK signaling remains unclear. We have investigated the requirement of the JAK/STAT pathway for signaling by wild-type and mutant forms of the RTK Torso (Tor) using a genetic approach in Drosophila. Our results indicate that the JAK/STAT pathway plays little or no role in signaling by wild-type Tor. In contrast, we find that STAT, encoded by marelle (mrl; DStat92E), is essential for the gain-of-function mutant Tor (Tor(GOF)) to activate ectopic gene expression. Our findings indicate that the Ras/Raf/MEK/MAPK signaling pathway is sufficient to mediate the normal functions of wild-type RTK, whereas the effects of gain-of-function mutant RTK additionally require STAT activation.

2002_Dev_Li.pdf
2001
Bach EA, Perrimon N. The role of the JAK-STAT in hematopoeisis and immune responses in Drosophila. In: Ward AC. The JAK-STAT Pathway in Hematopoeisis. Landes Bioscience; 2001. p. 112-127.
2000
Zeidler MP, Bach EA, Perrimon N. The roles of the Drosophila JAK/STAT pathway. Oncogene. 2000;19 (21) :2598-606. Abstract

The JAK/STAT signal transduction pathway has been conserved throughout evolution such that true structural and functional homologues of components originally identified in vertebrate systems are also present in the model genetic system Drosophila melanogaster. In addition to roles during larval hematopoiesis reminiscent of the requirement for this pathway in mammalian systems, the JAK/STAT pathway in Drosophila is also involved in a number of other developmental events. Recent data has demonstrated further roles for the JAK/STAT pathway in the establishment of sexual identity via the early embryonic expression of Sex lethal, the segmentation of the embryo via the control of pair rule genes including even skipped and the establishment of polarity within the adult compound eye via a mechanism that includes the four jointed gene. Use of the powerful genetics in the model organism Drosophila may identify new components of the JAK/STAT pathway, define new roles for this pathway, and provide insights into the function of this signal transduction system. Here we review the roles of STAT and its associated signaling pathway during both embryonic and adult stages of Drosophila development and discuss future prospects for the identification and characterization of novel pathway components and targets. Oncogene (2000).

2000_Oncogene_Zeidler.pdf
1999
Zeidler MP, Perrimon N, Strutt DI. Polarity determination in the Drosophila eye: a novel role for unpaired and JAK/STAT signaling. Genes Dev. 1999;13 (10) :1342-53. Abstract

The JAK/STAT signaling pathway is required for many processes including cytokine signaling, hematopoiesis, gliagenesis, and Drosophila segmentation. In this report we present evidence demonstrating that the JAK/STAT pathway is also central to the establishment of planar polarity during Drosophila eye development. We show that a localized source of the pathway ligand, Unpaired, is present at the midline of the developing eye, which is capable of activating the JAK/STAT pathway over long distances. A gradient of JAK/STAT activity across the DV axis of the eye regulates ommatidial polarity via an unidentified second signal. Additionally, localized Unpaired influences the position of the equator via repression of mirror.

1999_Genes & Dev_Zeidler.pdf
1997
Hou XS, Perrimon N. The JAK-STAT pathway in Drosophila. Trends Genet. 1997;13 (3) :105-10. Abstract

Recent studies in Drosophila have identified a single JAK and a single STAT protein. Genetic and biochemical analyses reveal that these two proteins operate in the same signal transduction pathway. Phenotypic analyses of JAK and STAT mutants implicate this pathway in a number of developmental decisions, in particular the regulation of pair-rule genes and fly hematopoiesis.

1997_Trends Genet_Hou.pdf
1996
Hou XS, Melnick MB, Perrimon N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell. 1996;84 (3) :411-9. Abstract

We have identified a putative Drosophila STAT protein named Marelle that exhibits mutant phenotypes identical to mutations in the Hopscotch/JAK kinase. We show that a reduction in the amount of marelle gene activity suppresses the phenotype associated with a gain-of-function mutation in hopscotch and enhances the phenotype associated with a weak hopscotch mutation. We propose that Hopscotch activates Marelle to regulate transcription of target genes such as the pair rule gene even-skipped. Our results demonstrate the existence of an invertebrate JAK/STAT system.

1996_Cell_Hou.pdf