Hedgehog

2014
Kim K, Vinayagam A, Perrimon N. A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep. 2014;7 (6) :2066-77. Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by binding to sequences within the 3' UTR of mRNAs. Because miRNAs bind to short sequences with partial complementarity, target identification is challenging. To complement the existing target prediction algorithms, we devised a systematic "reverse approach" screening platform that allows the empirical prediction of miRNA-target interactions. Using Drosophila cells, we screened the 3' untranslated regions (3' UTRs) of the Hedgehog pathway genes against a genome-wide miRNA library and identified both predicted and many nonpredicted miRNA-target interactions. We demonstrate that miR-14 is essential for maintaining the proper level of Hedgehog signaling activity by regulating its physiological target, hedgehog. Furthermore, elevated levels of miR-14 suppress Hedgehog signaling activity by cotargeting its apparent nonphysiological targets, patched and smoothened. Altogether, our systematic screening platform is a powerful approach to identifying both physiological and apparent nonphysiological targets of miRNAs, which are relevant in both normal and diseased tissues.

2014_Cell Rep_Kim.pdf Supplemental Files.zip
2008
Vincent S, Perrimon N, Axelrod JD. Hedgehog and Wingless stabilize but do not induce cell fate during Drosophila dorsal embryonic epidermal patterning. Development. 2008;135 (16) :2767-75. Abstract

A fundamental concept in development is that secreted molecules such as Wingless (Wg) and Hedgehog (Hh) generate pattern by inducing cell fate. By following markers of cellular identity posterior to the Wg- and Hh-expressing cells in the Drosophila dorsal embryonic epidermis, we provide evidence that neither Wg nor Hh specifies the identity of the cell types they pattern. Rather, they maintain pre-existing cellular identities that are otherwise unstable and progress stepwise towards a default fate. Wg and Hh therefore generate pattern by inhibiting specific switches in cell identity, showing that the specification and the patterning of a given cell are uncoupled. Sequential binary decisions without induction of cell identity give rise to both the groove cells and their posterior neighbors. The combination of independent progression of cell identity and arrest of progression by signals facilitates accurate patterning of an extremely plastic developing epidermis.

2008_Dev_Vincent.pdf Supplement.pdf
2004
Perrimon N, Häcker U. Wingless, hedgehog and heparan sulfate proteoglycans. Development. 2004;131 (11) :2509-11; author reply 2511-3. 2004_Dev_Hacker.pdf
2002
Nybakken K, Perrimon N. Hedgehog signal transduction: recent findings. Curr Opin Genet Dev. 2002;12 (5) :503-11. Abstract

The Hedgehog (Hh) family of signaling molecules are key agents in patterning numerous types of tissues. Mutations in Hh and its downstream signaling molecules are also associated with numerous oncogenic and disease states. Consequently, understanding the mechanisms by which Hh signals are transduced is important for understanding both development and disease. Recent studies have clarified several aspects of Hh signal transduction. Several new Sonic Hedgehog binding partners have been identified. Cholesterol and palmitic acid modifications of Hh and Sonic hedgehog have been examined in greater detail. Characterization of the trafficking patterns of the Patched and Smoothened proteins has demonstrated that these two proteins function very differently from the previously established models. The Fused kinase has been demonstrated to phosphorylate the kinesin-like protein Costal2 and the sites identified, while Cubitus interruptus has been shown to be phosphorylated in a hierarchical manner by three different kinases. Finally, the interactions, both genetic and physical, between Fused, Costal2, Cubitus interruptus, and Suppressor of Fused have been further elucidated.

2002_Science_Nybakken.pdf
Micchelli CA, The I, Selva E, Mogila V, Perrimon N. Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development. 2002;129 (4) :843-51. Abstract

Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.

2002_Dev_Micchelli.pdf
2000
Bellaiche Y, The I, Perrimon N. [Role des proteoglycanes dans la distribution du facteur secrete Hedgehog] (French). Medecine Sciences . 2000;2 :250-252.
1999
The I, Bellaiche Y, Perrimon N. Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell. 1999;4 (4) :633-9. Abstract

Hedgehog (Hh) molecules play critical roles during development as a morphogen, and therefore their distribution must be regulated. Hh proteins undergo several modifications that tether them to the membrane. We have previously identified tout velu (ttv), a homolog of the mammalian EXT tumor suppressor gene family, as a gene required for movement of Hh. In this paper, we present in vivo evidence that ttv is involved in heparan sulfate proteoglycan (HSPG) biosynthesis, suggesting that HSPGs control Hh distribution. In contrast to mutants in other HSPG biosynthesis genes, the activity of the HSPG-dependent FGF and Wingless signaling pathways are not affected in ttv mutants. This demonstrates an unexpected level of specificity in the regulation of the distribution of extracellular signals by HSPGs.

1999_Mol Cell_The.pdf
1998
Bellaiche Y, The I, Perrimon N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature. 1998;394 (6688) :85-8. Abstract

Hedgehog (Hh) proteins act through both short-range and long-range signalling to pattern tissues during invertebrate and vertebrate development. The mechanisms allowing Hedgehog to diffuse over a long distance and to exert its long-range effects are not understood. Here we identify a new Drosophila gene, named tout-velu, that is required for diffusion of Hedgehog. Characterization of tout-velu shows that it encodes an integral membrane protein that belongs to the EXT gene family. Members of this family are involved in the human multiple exostoses syndrome, which affects bone morphogenesis. Our results, together with the previous characterization of the role of Indian Hedgehog in bone morphogenesis, lead us to propose that the multiple exostoses syndrome is associated with abnormal diffusion of Hedgehog proteins. These results show the existence of a new conserved mechanism required for diffusion of Hedgehog.

1998_Nat_Bellaiche.pdf
1995
Perrimon N. Hedgehog and beyond. Cell. 1995;80 (4) :517-20. 1995_Cell_Perrimon.pdf