EGF receptor

Duffy JB, Perrimon N. The UAS/GAL4 system for tissue-specific analysis of EGFR gene function in Drosophila melanogaster. In: Marí-Beffa M, Knight J. Key Experiments in Practical Developmental Biology. Cambridge University Press; 2004. p. 269-281.
Ghiglione C, Amundadottir L, Andresdottir M, Bilder D, Diamonti JA, Noselli S, et al. Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development. 2003;130 (18) :4483-93. Abstract

The transmembrane protein Kekkon 1 (Kek1) has previously been shown to act in a negative feedback loop to downregulate the Drosophila Epidermal Growth Factor Receptor (DER) during oogenesis. We show that this protein plays a similar role in other DER-mediated developmental processes. Structure-function analysis reveals that the extracellular Leucine-Rich Repeat (LRR) domains of Kek1 are critical for its function through direct association with DER, whereas its cytoplasmic domain is required for apical subcellular localization. In addition, the use of chimeric proteins between Kek1 extracellular and transmembrane domains fused to DER intracellular domain indicates that Kek1 forms an heterodimer with DER in vivo. To characterize more precisely the mechanism underlying the Kek1/DER interaction, we used mammalian ErbB/EGFR cell-based assays. We show that Kek1 is capable of physically interacting with each of the known members of the mammalian ErbB receptor family and that the Kek1/EGFR interaction inhibits growth factor binding, receptor autophosphorylation and Erk1/2 activation in response to EGF. Finally, in vivo experiments show that Kek1 expression potently suppresses the growth of mouse mammary tumor cells derived from aberrant ErbB receptors activation, but does not interfere with the growth of tumor cells derived from activated Ras. Our results underscore the possibility that Kek1 may be used experimentally to inhibit ErbB receptors and point to the possibility that, as yet uncharacterized, mammalian transmembrane LRR proteins might act as modulators of growth factor signalling.

Ghiglione C, Bach EA, Paraiso Y, Carraway KL, Noselli S, Perrimon N. Mechanism of activation of the Drosophila EGF Receptor by the TGFalpha ligand Gurken during oogenesis. Development. 2002;129 (1) :175-86. Abstract

We have analyzed the mechanism of activation of the Epidermal growth factor receptor (Egfr) by the transforming growth factor (TGF) alpha-like molecule, Gurken (Grk). Grk is expressed in the oocyte and activates the Egfr in the surrounding follicle cells during oogenesis. We show that expression of either a membrane bound form of Grk (mbGrk), or a secreted form of Grk (secGrk), in either the follicle cells or in the germline, activates the Egfr. In tissue culture cells, both forms can bind to the Egfr; however, only the soluble form can trigger Egfr signaling, which is consistent with the observed cleavage of Grk in vivo. We find that the two transmembrane proteins Star and Brho potentiate the activity of mbGrk. These two proteins collaborate to promote an activating proteolytic cleavage and release of Grk. After cleavage, the extracellular domain of Grk is secreted from the oocyte to activate the Egfr in the follicular epithelium.

Bai J, Chiu W, Wang J, Tzeng T, Perrimon N, Hsu J. The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development. 2001;128 (4) :591-601. Abstract

Photoreceptor and cone cells in the Drosophila eye are recruited following activation of the epidermal growth factor receptor (EGFR) pathway. We have identified echinoid (ed) as a novel putative cell adhesion molecule that negatively regulates EGFR signaling. The ed mutant phenotype is associated with extra photoreceptor and cone cells. Conversely, ectopic expression of ed in the eye leads to a reduction in the number of photoreceptor cells. ed expression is independent of EGFR signaling and ED is localized to the plasma membrane of every cells throughout the eye disc. We present evidence that ed acts nonautonomously to generate extra R7 cells by a mechanism that is sina-independent but upstream of Tramtrack (TTK88). Together, our results support a model whereby ED defines an independent pathway that antagonizes EGFR signaling by regulating the activity, but not the level, of the TTK88 transcriptional repressor.

Ghiglione C, Carraway KL, Amundadottir LT, Boswell RE, Perrimon N, Duffy JB. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell. 1999;96 (6) :847-56. Abstract

We have identified the Drosophila transmembrane molecule kekkon 1 (kek1) as an inhibitor of the epidermal growth factor receptor (EGFR) and demonstrate that it acts in a negative feedback loop to modulate the activity of the EGFR tyrosine kinase. During oogenesis, kek1 is expressed in response to the Gurken/EGFR signaling pathway, and loss of kek1 activity is associated with an increase in EGFR signaling. Consistent with our loss-of-function studies, we demonstrate that ectopic overexpression of kek1 mimics a loss of EGFR activity. We show that the extracellular and transmembrane domains of Kek1 can inhibit and physically associate with the EGFR, suggesting potential models for this inhibitory mechanism.

Brand AH, Perrimon N. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev. 1994;8 (5) :629-39. Abstract

In Drosophila, as in mammalian cells, the Raf serine/threonine kinase appears to act as a common transducer of signals from several different receptor tyrosine kinases. We describe a new role for Raf in Drosophila development, showing that Raf acts in the somatic follicle cells to specify the dorsoventral polarity of the egg. Targeted expression of activated Raf (Rafgof) within follicle cells is sufficient to dorsalize both the eggshell and the embryo, whereas reduced Raf activity ventralizes the eggshell. We show that Raf functions downstream of the EGF receptor to instruct the dorsal follicle cell fate. In this assay, human and Drosophila Rafgof are functionally similar, in that either can induce ventral follicle cells to assume a dorsal fate.

1994_Genes Dev_Brand.pdf
Rutledge BJ, Zhang K, Bier E, Jan YN, Perrimon N. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 1992;6 (8) :1503-17. Abstract

We describe the molecular characterization of the Drosophila gene spitz (spi), which encodes a putative 26-kD, EGF-like transmembrane protein that is structurally similar to TGF-alpha. Temporal and spatial expression patterns of spi transcripts indicate that spi is expressed throughout the embryo. Examination of mutant embryos reveals that spi is involved in a number of unrelated developmental choices, for example, dorsal-ventral axis formation, glial migration, sensory organ determination, and muscle development. We propose that spi may act as a ligand for cell-specific receptors, possibly rhomboid and/or the Drosophila EGF receptor homolog.

1992_Genes Dev_Rutledge.pdf