ß-catenin

2005
Hayward P, Brennan K, Sanders P, Balayo T, Dasgupta R, Perrimon N, et al. Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development. 2005;132 (8) :1819-30. Abstract

The establishment and stability of cell fates during development depend on the integration of multiple signals, which ultimately modulate specific patterns of gene expression. While there is ample evidence for this integration at the level of gene regulatory sequences, little is known about its operation at other levels of cellular activity. Wnt and Notch signalling are important elements of the circuitry that regulates gene expression in development and disease. Genetic analysis has suggested that in addition to convergence on the transcription of specific genes, there are modulatory cross-regulatory interactions between these signalling pathways. We report that the nodal point of these interactions is an activity of Notch that regulates the activity and the amount of the active/oncogenic form of Armadillo/beta-catenin. This activity of Notch is independent of that induced upon cleavage of its intracellular domain and which mediates transcription through Su(H)/CBF1. The modulatory function of Notch described here, contributes to the establishment of a robust threshold for Wnt signalling which is likely to play important roles in both normal and pathological situations.

2005_Dev_Hayward.pdf Supplement.pdf
2000
Noll E, Medina M, Hartley D, Zhou J, Perrimon N, Kosik KS. Presenilin affects arm/beta-catenin localization and function in Drosophila. Dev Biol. 2000;227 (2) :450-64. Abstract

Presenilin is an essential gene for development that when disrupted leads to a neurogenic phenotype that closely resembles Notch loss of function in Drosophila. In humans, many naturally occurring mutations in Presenilin 1 or 2 cause early onset Alzheimer's disease. Both loss of expression and overexpression of Presenilin suggested a role for this protein in the localization of Armadillo/beta-catenin. In blastoderm stage Presenilin mutants, Arm is aberrantly distributed, often in Ubiquitin-immunoreactive cytoplasmic inclusions predominantly located basally in the cell. These inclusions were not observed in loss of function Notch mutants, suggesting that failure to process Notch is not the only consequence of the loss of Presenilin function. Human presenilin 1 expressed in Drosophila produces embryonic phenotypes resembling those associated with mutations in Armadillo and exhibited reduced Armadillo at the plasma membrane that is likely due to retention of Armadillo in a complex with Presenilin. The interaction between Armadillo/beta-catenin and Presenilin 1 requires a third protein which may be delta-catenin. Our results suggest that Presenilin may regulate the delivery of a multiprotein complex that regulates Armadillo trafficking between the adherens junction and the proteasome.

2000_Dev Bio_Noll.pdf
1994
Noordermeer J, Klingensmith J, Perrimon N, Nusse R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature. 1994;367 (6458) :80-3. Abstract

The Wnt genes encode conserved secreted proteins that play a role in normal development and tumorigenesis. Little is known about the signal transduction pathways of Wnt gene products. One of the best characterized Wnt family members is the Drosophila segment polarity gene wingless. We have investigated whether segment polarity genes with a wingless-like phenotype mediate the wingless signal. We used a wingless transgene controlled by a heat-shock promoter for genetic epistasis experiments. We show that wingless acts through dishevelled and armadillo to affect the expression of the homeobox gene engrailed and cuticle differentiation.

1994_Nat_Noordermeer.pdf